Научись решать задачи ЕГЭ за пару минут!
Вооружись и победи в схватке с ЕГЭ!

Продолжаем рассматривать задачи на движение. Есть группа задач, которая отличается от обычных задач на движение – это задачи на круговое движение (круговая трасса, движение стрелок часов).  В этой статье мы с вами такие задачи и рассмотрим. Принципы решения те же самые, формула используется та же (формула закона прямолинейного движения). Но есть небольшие нюансы в подходах к решению.

Рассмотрим задачи:

Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 22 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 20 км/ч больше скорости другого? Далее

   Продолжаем рассматривать задачи входящие в состав экзамена по математике. В курсе алгебры есть группа задач, где задаётся уравнение функции и уравнение прямой — касательной к графику данной функции или прямой параллельной этой касательной.

Задачи несложные, но они требуют чёткого понимания геометрического смысла производной. Это теоретическая основа для решения подобных задач (и подобных им), и без этой основы никак нельзя. Рекомендую ознакомиться со статьями «Геометричесий смысл произвоной. Часть 1» и «Геометрический смысл производной. Часть 2».

Рассмотрим две задачи:

Прямая у = 4х + 8 параллельна касательной к графику функции

у = х2 – 5х + 7 

Найдите абсциссу точки касания.

Далее

Арифметическая прогрессия. В состав типов заданий экзамена входят задачи на прогрессии. Это текстовые задачи. Задания предельно просты, в школьном курсе в этой теме имеются примеры посложнее. Необходимо понимать саму суть – что собой представляет арифметическая и геометрическая прогрессия,  а также знать формулы (их необходимо выучить). Итак, известно, что существуют различные последовательности чисел, их множество, например:

23. 6, 89, 3, -2, 4 ...

2,3; 8; 90: 45,5 ...

Числа могут быть дробные, десятичные и пр...  Так вот:

Арифметическая прогрессия – это такая последовательность чисел в которой каждое следующее число отличается от предыдущего на одну и ту же величину. Эта величина называется разностью арифметической прогрессии и обозначается буквой d.

an+1=an+d    n = 1,2,3,4…   (d — это разность)

! Каждый последующий член арифметической прогрессии равен сумме предыдущего  и числа  d.

Примеры арифметической прогрессии: Далее

    Физический смысл производной. В состав ЕГЭ по математике входит группа задач для решения которых необходимо знание и понимание физического смысла производной. В частности, есть задачи, где дан закон движения определённой точки (объекта), выраженный уравнением и требуется найти его скорость в определённый момент времени движения, либо время, через которое объект приобретёт определённую заданную скорость. Задачи очень простые, решаются  они  в одно действие. Итак:

Пусть задан закон движения материальной точки x (t) вдоль координатной оси, где x координата движущейся точки, t – время.

Скорость в определённый момент времени – это производная координаты по времени. В этом и состоит механический смысл производной.

Аналогично, ускорение – это производная скорости по времени: 

Таким образом, физический смысл производной это скорость. Это может быть скорость движения, скорость изменения какого-либо процесса (например роста бактерий), скорость совершения работы (и так далее, прикладных задач множество). Далее

   Здравствуйте, друзья! Эта статья является продолжением статьи «Сложение и умножение вероятностей. Часть 1». В ней мы рассмотрели основы необходимой  теории и решили несколько задач. Здесь вас ждёт ещё четыре. Рассмотрим их:

Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,2. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

То есть нам необходимо найти вероятность события, когда не перегорят обе лампы, либо не перегорит только первая лампа, либо не перегорит только вторая лампа. Далее

    Сложение и умножение вероятностей. В этой статье речь пойдёт о решении задач по теории вероятностей. Ранее мы с вами уже разбирали некоторые простейшие задания, для их решения достаточно знать и понимать формулу классической вероятности (советую повторить). 

Есть тины задачи немного сложнее, для их решения необходимо знать и понимать: правило сложения и правило умножения вероятностей, понятия зависимые и независимые события, противоположные события, совместные и несовместные события. Не пугайтесь определений, все просто )). В этой статье мы с вами именно такие задачи и рассмотрим. Далее

  Здравствуйте, Дорогие друзья! В данной статье мы с вами рассмотрим решение тригонометрического уравнения, и найдём корни принадлежащие определённому (заданному) отрезку. Подобный пример мы уже рассмотрели в предыдущей статье данной рубрики. Но в этом примере мы разберём другой способ определения  корней на отрезке.

Дано уравнение

Тригонометрическое уравнение. Отбор корней на интервале.

а) Решите уравнение.
б) Укажите корни уравнения, принадлежащие отрезку

Решение: Далее