Научись решать задачи ЕГЭ за пару минут!
Вооружись и победи в схватке с ЕГЭ!

Задачи на среднюю скорость (далее СК). Мы уже рассматривали задания на прямолинейное движение. Рекомендую посмотреть статьи   "Задачи на прямолинейное движение. Часть 1" и "Задачи на прямолинейное движение. Часть 2".  Типовые задания на среднюю скорость это группа задач на движение, они включены в ЕГЭ по математике и такая задача вполне вероятно может оказаться перед вами в момент самого экзамена. Задачки простые, решаются быстро.

Смысл таков: представьте объект передвижения, например автомобиль. Он проходит определённые участки пути с разной скоростью. На весь путь затрачивается какое-то определённое время. Так вот: средняя скорость это такая постоянная скорость с которой автомобиль преодолел бы данный весть путь за это же время  То есть формула средней скорости такова:

Далее

В этой статье мы с вами рассмотрим типовые задания, которые включены в состав экзамена по математике. При работе с ними требуются знания и навыки решения показательных уравнений и неравенств. Представленные задачи особой сложности не представляют, процесс сводится к решению простейших уравнений (неравенств). В этой рубрике нами уже были рассмотрены некоторые задачи, можете изучить статьи «Задачи с логарифмами»  и «Задачи по физике. Это не страшно!».

Вспомним свойства показателей степени:

a0= 1

Нулевая степень любого числа равна единице.

* * *

Суть данного свойства заключается в том, что при переносе числителя в знаменатель и наоборот, знак показателя степени меняется на противоположный.  Например: Далее

    Здравствуйте, Дорогие друзья! Сегодня пост короткий. Небольшая новость для всех, кого интересует тема блоггинга. На днях написал книгу, конечно, звучит это громко, но в интернете подобные электронные творения называют именно так –  книга.

Далее

На сайте уже были рассмотрены некоторые типы задач по стереометрии, которые входят в единый банк заданий экзамена по математике. Например, задания про составные многогранники.

Призма называется правильной если её боковые перпендикулярны основаниям и в основаниях лежит правильный многоугольник. То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.

Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.

Далее

В этой статье рассмотрим задачи на нахождение элементов  конуса. Конечно же, их можно отнести к одним из самых простых задач, которые входят в открытый банк заданий ЕГЭ по математике.

Как и многие задачи этой части, решаются они в одно-два действия. Несмотря на то, что это это стереометрическая задача, для решения достаточно знать теорему Пифагора. Рассмотрим задачи:

Высота конуса равна 57, а диаметр основания — 152. Найдите образующую конуса.
Рассмотрим осевое сечение конуса. По теореме Пифагора:

Знаки тригонометрических функций. Друзья! В одной из прошлых статей, где мы рассматривали решение задач на вычисление значений тригонометрических выражений, предлагалось запомнить как факт 

Знаки тригонометрических функций

Помнить эту информацию крайне необходимо. Но необходимо понимать из чего она  исходит, так как именно понимание этого – есть одно из основных  условий усвоения сути тригонометрии.

Построим тригонометрическую окружность (окружность на координатной плоскости с радиусом равным единице); радиус-вектор, повернутый на произвольный угол от 0 до 90 градусов; обозначим абсциссу и ординату точки пересечения радиус-вектора и единичной окружности соответственно х и у: Далее

   Здравствуете, Дорогие друзья! В этой статье мы с вами разберём пример, где требуется решить тригонометрическое уравнение и указать корни принадлежащие заданному отрезку. Способов определения корней, которые принадлежат отрезку как минимум два. Один из них изложен в представленной задаче. Он хорош!

Но иногда, в конкретных типах задач, удобнее использовать другой способ. Он будет описан в одной из  будущих статей, не пропустите!

Отметим, что для решения «сложных» тригонометрических уравнений, входящих в часть С, необходимо:

— в совершенстве владеть методикой решения простейших тригонометрических уравнений

— знать табличные значения тригонометрических функций углов от 0 до 90 градусов

— знать формулы приведения

— уметь проводить преобразования, используя тригонометрические формулы

Разумеется, нужна хорошая практика.

Дано уравнение: Далее