Подготовка к ЕГЭ по математике бесплатно!
Интенсив ЕГЭ по истории БЕСПЛАТНО!

  Угловой коэффициент прямой. В этой статье мы с вами рассмотрим задачи связанные с координатной плоскостью включённые в ЕГЭ по математике. Это задания на:

— определение углового коэффициента прямой, когда известны две точки через которые она проходит;
— определение абсциссы или ординаты точки пересечения двух прямых на плоскости.

Что такое абсцисса и ордината точки было описано в прошлой статье данной рубрики. В ней мы уже рассмотрели несколько задач связанных с координатной плоскостью. Что необходимо понимать для рассматриваемого типа задач? Немного теории.

Уравнение прямой на координатной плоскости имеет вид:

где k это и есть угловой коэффициент прямой.

Следующий момент! Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.

Далее

 В этой статье мы рассмотрим с вами одни из самых простых заданий, входящих в открытый банк заданий ЕГЭ по математике. Всё, что необходимо сделать – это безошибочно произвести простые вычисления. В конце статьи вас ждёт конкурсное задание с поощрительным призом, будьте первым! Рассмотрим задачи:

314867. В квартире, где проживает Алексей, установлен прибор учёта расхода холодной воды (счётчик). 1 сентября счётчик показывал расход 103 куб.м воды, а 1 октября — 114 куб.м. Какую сумму должен заплатить Алексей за холодную воду за сентябрь, если цена 1 куб.м холодной воды составляет 19 руб. 20 коп.? Ответ дайте в рублях.

Расход воды за сентябрь месяц составил 114 – 103 = 11 кубических метров. Так как стоимость 1 кубического метра холодной воды составляет 19 рублей 20 копеек, то  Алексей должен заплатить 11∙19,2 = 211,2 рубля. 

Ответ: 211,2

Далее

   Здравствуйте, друзья! В состав ЕГЭ по математике входят задачи связанные с нахождением площади круга или его частей (сектора, кольцевых элементов). Фигура задаётся на листе в клетку. В одних задачах масштаб клетки задаётся 1×1 сантиметр, в других он не оговаривается – даётся площадь элемента круга или самого круга.

Задания неглубокие, необходимо помнить формулу площади круга, уметь визуально  (по клеткам) определить радиус круга, какую долю от круга составляет выделенный сектор. Кстати, на блоге имеется статья о площади сектора. Её содержание к решению представленных ниже задач отношения не имеет, но для тех, кто хочет вспомнить формулу площади круга и площади сектора будет весьма полезна. Рассмотрим задачи (взяты из открытого банка заданий):

Найдите (в см2) площадь S фигуры, изображенной на клетчатой бумаге с размером клетки 1 см х 1 см. В ответе запишите S/л. Далее

    Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Понятие вектора

Вектор — это направленный отрезок.

Все векторы, имеющие одинаковое направление и равные по длине являются равными.

Далее

Для вас несколько заданий — в условии дан прямоугольный треугольник. В условии говорится о вычислении углов между высотой и биссектрисой, медианой и биссектрисой, высотой и медианой проведёнными из прямого угла.

Это группа заданий входит в состав ЕГЭ по математике. Задачи несложные, требуется знание теоремы о сумме углов треугольника, свойств равнобедренного треугольника и немного логики. Да! Есть один нюанс — задачи, в  которых говорится о медиане проведённой к гипотенузе необходимо знать одно свойство, теорию можно посмотреть здесь. Приступим!

Один острый угол прямоугольного треугольника в 4 раза больше другого.  Найдите больший острый угол. Ответ дайте в градусах. Далее

Виды треугольников. В следующей статье речь пойдёт о задачах на решение прямоугольного треугольника. Эти задания не связаны с нахождением сторон, синуса, косинуса, тангенса или котангенса углов, такие мы уже рассматривали.  

Сначала основная теория о треугольниках для тех, кто её подзабыл, и для всех, кто хочет повторить 😉

Далее

Теорема Пифагора и её связь с тремя формулами. В одной из статей мы рассматривали взаимосвязь теоремы Пифагора и теоремы косинусов. Здесь хочу вам рассказать о нескольких формулах, в основе которых лежит теорема Пифагора. Вся прелесть в том, что понимая это, нет необходимости учить представленные ниже формулы. Не раз слышал — мол, как это возможно выучить столько формул в математике?

Ещё раз подчеркну, что выучить необходимо только четверть всех формул или даже меньше. Остальные можно быстро вспомнить или восстановить в памяти, если вы поняли их смысл и понимаете логические связи этих формул с другими.  Итак, сама теорема Пифагора. Рассмотрим прямоугольный треугольник:

ТЕОРЕМА! Квадрат гипотенузы равен сумме квадратов катетов.

Далее