Подготовка к ЕГЭ. Обществознание и история!
Подготовка к ЕГЭ по математике 2017 бесплатно!
Домашняя школа для 5-9 классов!

     Здравствуйте, Дорогие друзья! Прошло 69 лет со Дня Победы над фашистской германией. Какой ценой это далось, нам уже, наверное, до конца не понять и не прочувствовать. Но мы будем помнить… Мы должны помнить!

Далее

Окружность вписана в треугольник. В данной статье собрал для вас задачи, в которых даётся треугольник с вписанной в него или описанной около него окружностью. В условии ставится вопрос о нахождении радиуса окружности или стороны треугольника. 

Данные задания удобно решать используя представленные формулы. Рекомендую их выучить, бывают очень полезны не только при решении этого типа заданий. Одна формула выражает связь радиуса вписанной в треугольник окружности с его сторонами и площадью, другая радиус описанной около треугольника окружности также с его сторонами и площадью:

где a, b, c –  стороны треугольника

S – площадь треугольника

Далее

    Здравствуйте, Дорогие друзья! В этой статье представлен тип заданий, входящих в единый банк заданий ЕГЭ по математике, которые не требуют знания теории и формул. Это одни из самых простых заданий. Требуется подставить данные из таблицы в формулу рейтинга и безошибочно произвести вычисления. После этого требуется выбрать указанную в условии величину – наименьший или наивысший рейтинг. Рассмотрим задачи: 

316048. Независимая экспертная лаборатория определяет рейтинг R бытовых приборов на основе коэффициента ценности, равного 0,01 средней цены P, показателей функциональность F, качества Q  и дизайна D. Каждый из показателей оценивается целым числом от 0 до 4. Итоговый рейтинг вычисляется по формуле

В таблице даны средняя цена и оценки каждого показателя для нескольких моделей электрических мясорубок. Определите наивысший рейтинг представленных в таблице моделей электрических мясорубок.

Далее

     Дорогие друзья! Мы уже рассматривали с вами задачи на вписанный в окружность угол. Если вы давно не решали подобных  заданий, и не помните свойство вписанного угла, то обязательно ознакомьтесь с материалами и решите несколько задач, посмотрите статьи на блоге «Угол вписанный в окружность. Часть 1!» и про вписанный четырёхугольник, либо соответствующий раздел в учебной литературе.

Есть ещё один тип заданий с вписанным углом, которые входят в состав ЕГЭ. Их мы и рассмотрим в этой статье. В заданиях имеется одна  особенность – окружность и угол заданы (построены) на листе в клетку и никаких градусных величин в условии не задано. Возникает вопрос: а как тогда углы-то вычислять?

Всё просто! Нужно понимать как «установить» угол, если он построен на листе в клетку, а далее использовать свойство вписанного угла. Запутал?

Начнём с самого простого. Чему равен данный угол?

Далее

   Здравствуйте, Дорогие друзья! В данной статье для вас представлено две задачи на выбор одного варианта из четырёх представленных. В заданиях речь идет о доходе салона мебели с продажи определённого изделия. Необходимо определить, продажа какого изделия наиболее выгодна для салона. В ответе требуется указать сумму, которая поступит в доход салона от этого изделия. В задачах используется понятие процента (повторите).

77357. Мебельный салон заключает договоры с производителями мебели. В договорах указывается, какой процент от суммы, вырученной за продажу мебели, поступает в доход мебельного салона.

Далее

  Задачи с пирамидами. В данной статье продолжим рассматривать задачи с пирамидами. Их нельзя отнести к какому-то классу или типу заданий, и дать общие рекомендации для решения. Я просто собрал оставшиеся задачи, не рассматриваемые ранее, и решил изложить их в одной статье.

Перечислю теорию, которую необходимо освежить в памяти перед решением: формула объёма пирамиды, свойства подобия фигур и тел, свойства правильных пирамид, теорема Пифагора, формула площади треугольника (в этой статье она вторая). Рассмотрим задачи:

От треугольной пирамиды, объем которой равен 80, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

Далее

Объём тетраэдра. В данной статье мы с вами рассмотрим несколько заданий с пирамидами. Как известно, тетраэдр также является пирамидой. Смыл таков – все ребра пирамиды, либо только высота увеличивается в несколько раз. Понятно, что при этом увеличивается её объём пирамиды и площадь поверхности. Далее требуется вычислить во сколько раз происходит это увеличение.

1. Если увеличивается только высота пирамиды и стоит вопрос об изменении объёма, то понятно, что он увеличивается прямопропорционально исходному объёму пирамиды, так как зависимость линейная. Проще говоря, объём увеличивается во столько же раз, во сколько увеличена высота.

2. Если речь идёт об увеличении всех рёбер пирамиды в определённое количество раз, то здесь необходимо понимать, что в итоге получается пирамида подобная исходной, причём её грани также подобны соответствующим граням полученной пирамиды.

Позволю себе, на данный момент, по вопросу подобия фигур и тел предложить Вам обратиться к теории изложенной в учебнике. В скором будущем обязательно размещу отдельную статью на эту тему.

Что касается представленной группы задач, то отмечу, что с использованием свойств подобия такие задания решаются практически в одно действие.

Вот что необходимо помнить и знать:

Далее