Подготовка к ЕГЭ по математике бесплатно!
Хостинг для вашего сайта!

  Данная статья является продолжением двух предыдущих. В статье «Геометрический смысл производной. Часть 1!» была изложена теория и рассмотрен один из способов нахождения производной по данному графику функции и касательной, проведенной в определённой точке графика.

Там же я обещал вам рассмотреть ещё один способ решения подобных задач. Напомню, что задания такого типа входят в состав экзамена по математике. В статье «Уравнение прямой, проведённой через две заданные точки» мы рассмотрели формулу, благодаря которой  находится уравнение прямой.

Представленная в указанных статьях теория необходима, так как тот способ, который представлен ниже, непосредственно с ней связан. Итак, кратко:

1.

Далее

Уравнение прямой проходящей через две точки. В статье "Геометрический смысл производной. Часть 1" я обещал вам разобрать второй способ решения представленных задач на нахождение производной, при данном графике функции и касательной к этому графику. Этот способ мы разберём в следующей статье, не пропустите! Почему в следующей?

Дело в том, что там будет использоваться формула уравнения прямой. Конечно, можно было бы просто показать данную формулу и посоветовать вам её выучить. Но лучше объяснить – от куда она исходит (как выводится). Это необходимо! Если вы её забудете, то быстро восстановить её не представит труда. Ниже подробно всё изложено. Итак, у нас на координатной плоскости имеется две точки А11) и В(х22), через указанные точки проведена прямая: Далее

  Геометрический смысл производной. Здравствуйте, друзья! Ближайшие четыре месяца решил задачи связанные с производной не рассматривать и не разбирать, хотел оставить на будущее. Дело в том, что провёл в интернете небольшое исследование, по разным форумам побродил, и выяснил, что в Части В эти задачи у выпускников вызывают некоторые затруднения. Почему? Большинство же из них, на самом деле, очень просты.

Больше время на подобный сбор информации тратить не бстану, а буду писать о том, что считаю нужным и постараюсь наиболее понятно подавать вам материал.

В этой статье разберём задачи, в которых требуется найти производную при заданном графике функции  и касательной к графику в определённой точке *При чём в этих задачах явно отмечены как минимум две точки, через которые эта касательная проходит. Что нужно знать для решения таких задач?

Геометрический смысл производной

Построим произвольный график некой функции y = f (x)  на координатной плоскости, построим касательную в точке xо, обозначим угол между прямой о осью ox как α (альфа)

Далее

Формулы приведения! Они относятся к разделу «тригонометрия» в математике. Суть их заключается в приведении тригонометрических функций углов к более «простому» виду. О важности их знания  написать можно много. Этих формул аж 32 штуки!

Не пугайтесь, учить их не надо, как и многие другие формулы  в курсе математики. Лишней информацией голову забивать не нужно, необходимо  запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!»  – это значит, что  действительно,  это необходимо  именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

Перечислю лишь некоторые задачи, которые будут на ЕГЭ по математике, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например: 

Далее

В данной статье мы с вами разберём некоторые задачи связанные с выражениями. Задания данной группы довольно разнообразны. Если вы запомнили свойства степеней, корней и логарифмов, знаете основные формулы тригонометрии, и постоянно практикуетесь, то большинство задач для вас никакого труда не представят.

Относительную сложность могут вызывать следующие:

— преобразования буквенных иррациональных выражений
— вычисление значений тригонометрических выражений
— преобразования тригонометрических выражений

Если перечислить все группы задач, то они довольно разнообразны.

Далее

Синус косинус. Определения. Друзья! В прошлой статье, где были рассмотрены задачи на решение прямоугольного треугольника, я пообещал изложить приём запоминания определений синуса и косинуса. Используя его, вы всегда быстро вспомните – какой катет относится к гипотенузе (прилежащий или противолежащий). Решил в «долгий ящик не откладывать», необходимый материал ниже, прошу ознакомиться 😉

Дело в том, что я не раз наблюдал, как учащиеся 10-11 классов с трудом вспоминают данные определения. Они прекрасно помнят, что катет относится к гипотенузе, а вот какой из них — забывают и путают. Цена ошибки, как вы знаете на экзамене – это потерянный бал. 

Информация, которую я представлю непосредственно к математике не имеет никакого отношения. Она связана с образным мышлением, и с приёмами словесно-логической  связи. Именно так, я сам, раз и на всегда запомнил данные определения. Если вы их всё же забудете, то при помощи представленных приёмов всегда легко  вспомните.

Напомню  определения синуса и косинуса  в прямоугольном треугольнике:

Далее

В данной статье мы с вами разберём задачи на решение прямоугольного треугольника. На первый взгляд, число прототипов заданий, представленных в едином банке задач ЕГЭ по математике, несколько пугает – их там более 300 (*на момент написания этой статьи). Но практически все эти задания решаются в два, максимум три действия. Многие вообще в одно. 

Также сюда можно отнести другие задачи, в которых прямоугольный треугольник является частью другого данного в условии треугольника, например равнобедренного. Средства для их решения совершенно одни и те же. Постараюсь акцентировать внимание на основных базовых знаниях и основных методах, которые необходимы для решения.

Кстати, в большинстве пособий по подготовке к экзамену почему-то встречаются только примеры на решение прямоугольного треугольника, как будто других задач в этом разделе и не существует — странно, конечно.

Далее