Подготовка к ЕГЭ по математике 2017 бесплатно!
Программируемые LEGO конструкторы! Посмотреть!

Тригонометрическая функция (макс и мин)

Тригонометрическая функция. Продолжаем рассматривать задачи связанные с нахождением точек максимума (минимума). Советую повторить теорию необходимую для решения задач на нахождение наибольшего (наименьшего) значения функции на интервале и на нахождение точек максимума (минимума) функции. В этой статье разберём две задачи в этой теме, рассмотрим тригонометрические функции.  Задачи с логарифмами уже были нами рассмотрены ранее.

Ещё раз запишем алгоритм нахождения точек максимума (минимума) функции:

1. Вычисляем производную функции.

2. Приравниваем её к нулю, решаем уравнение.

3. Полученные корни разбивают числовую ось на интервалы, отмечаем их.

4. Определяем знаки производной на этих интервалах (подставляем произвольные значения из интервалов в производную).

5. Делаем вывод.

77492. Найдите точку максимума функции y = (2x –3) cos x – 2sin x + 5 

принадлежащую промежутку (0;П/2).

Найдём производную функции:

Решаем уравнение:

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, и другие при этом не теряют смысла. Следовательно:

Решаем уравнение      – sin x = 0:

В условии дан промежуток (0;П/2). Ему не принадлежит ни один из полученных корней. *Обратите внимание, что указанные границы исключены (скобки круглые).

Решаем уравнение: 2х – 3 = 0, получим х = 1,5.

Запишем данный промежуток в радианах, получим: (0;1,57), так как

Следовательно полученное значение принадлежит промежутку (0;П/2):

Конечно, нам интуитивно понятно, что полученная точка это и есть точка максимума, и казалось бы в дальнейших вычислениях и рассуждениях нет необходимости. Но любая задача данного типа должна быть решена до конца по указанному алгоритму. Это важно!

Полученное значение х разбивает данный промежуток на два других. Определим знаки производной функции, подставляя произвольные значения из полученных промежутков (0;1,5) и (1,5;1,57) в найденную производную, и изобразим на рисунке поведение функции:

*В подобных случаях необязательно вычислять значения выражений. Важно установить их знаки (положительный либо отрицательный). Например, мы видим, что выражение:

(3,14/2) – 3    имеет отрицательный знак

3,14 – 3    имеет положительный знак

 В целом этого достаточно для определения знака выражения.

Таким образом, в точке х = 1,5 функция меняет знак с положительного на отрицательный.  Это означает, что данная точка является точкой максимума функции на заданном промежутке.

Ответ: 1,5  

77493. Найдите точку минимума функции y = (0,5 – x) cos x + sin x  

принадлежащую промежутку (0;П/2).  

Найдём производную функции:

Решаем уравнение:

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, и другие при этом не теряют смысла. Следовательно:

Решаем уравнение   – sin x = 0:

В условии дан промежуток (0;П/2). Ему не принадлежит ни один из полученных корней.

Решаем уравнение: 0,5 – х = 0,   получим х = 0,5.

Запишем данный промежуток в радианах: (0;1,57).

*Показано в предыдущем примере.

Следовательно полученное значение принадлежит промежутку (0;П/2):

Найденное значение х разбивает данный промежуток на два других. Определим знаки производной функции, подставляя произвольные значения из полученных промежутков (0;0,5) и (0,5;1,57) в найденную производную, и изобразим на рисунке поведение функции:

*Синус 0,3 радиана и синус 1 радиана имеют положительные знаки, так как оба эти угла лежат в пределах от 0 до 90 градусов. А мы знаем, что синусы углов лежащих в первой четверти имеют положительные значения.

Таким образом, в точке х = 0,5 функция меняет знак с отрицательного на положительный.  Это означает, что данная точка является точкой минимума функции на заданном промежутке.

Ответ: 0,5  

Как видите всё просто. Необходимо понимать свойства производной для исследования функций, понимать как «работать» с мерами углов, знать основы тригонометрии.

В будущем мы рассмотрим задачи на нахождение наибольшего (наименьшего) значения тригонометрических функций на заданном интервале, не пропустите!

Посмотрите, что нашёл в интернете. Оказывается, что при извержении вулканов тоже молнии бывают. Да ещё какие!

На том всё. Успехов Вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.


Подготовка к ОГЭ по математике. Полный курс!

Школа репетиторов Анны Малковой. Супер тренинг!

Онлайн-обучение, подготовка к ЕГЭ и ОГЭ по предметам!

50 базовых упражнений лечебной физкультуры!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*