Здравствуйте! Продолжаем рассматривать задачи входящие в состав экзамена по математике. Задания, которые мы рассмотрим ниже, по-большому счёту, никаких глубоких знаний теории не требуют. Для их решения необходимо понимание геометрического смысла производной, умение решать квадратное уравнение и немного логики.
Суть заданий следующая: дана парабола вида у = ах2+bх+c и касательная к этой параболе у=kх+b. Один из коэффициентов (a, b или c) неизвестен и его необходимо найти.
Как решать такие задачи? Что необходимо вспомнить?
1. Если даны уравнения двух функций, то точка (точки) пересечения их графиков находится путём решения системы этих уравнений. Пара (х;у) являющаяся решением системы есть точка пересечения графиков (или пары, если точек пересечения больше).
2. Если к графику функции проведена касательная, то производная этой функции в точке касания равна угловому коэффициенту этой касательной (см. ссылку выше).
Рассмотрим задачи (показаны два способа решения): Далее