Подготовка к ЕГЭ по математике 2017 бесплатно!
Бесплатный метод устранения головной боли!

Из одной точки круговой трассы

    Задачи на круговое движение. Сначала о конкурсе — в конце поста размещена задача. Тот, кто первый решит её, получит денежный приз в размере 200 рублей. Ответ размещайте в комментариях. 

Продолжаем рассматривать задачи на движение. Есть группа задач, которая отличается от обычных задач на движение – это задачи на круговое движение (круговая трасса, движение стрелок часов).  В этой статье мы с вами такие задачи и рассмотрим. Принципы решения те же самые, формула используется та же (формула закона прямолинейного движения). Но есть небольшие нюансы в подходах к решению.

Рассмотрим задачи:

Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 22 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 20 км/ч больше скорости другого?

На первый взгляд, кому-то задачи на круговое движение могут показаться сложными и какими-то запутанными в сравнении с обычными задачами на прямолинейное движение. Но это только на первый взгляд. Данная задача легко превращается в задачу на прямолинейное движение. Как?

Мысленно развернём круговую трассу в прямую. На ней стоят два мотоциклиста. Один из них отстаёт от другого  на 11 км, так как сказано в условии, что длина трассы 22 километра.

Скорость отстающего на 20 километров в час больше (он догоняет того, кто впереди). Вот вам и задача на прямолинейное движение.

Итак, искомую величину (время, через которое они поравняются) примем за х часов. Скорость первого (находящегося впереди) обозначим у км/ч, тогда скорость второго (догоняющего) будет  у + 20.

Занесем скорость и время в таблицу.

Заполняем графу «расстояние»:

Второй проезжает расстояние (до встречи) на 11 км больше, значит

11/20 часа это то же, что и 33/60 часа. То есть, до их встречи прошло 33  минуты. Как переводить часы в минуты, и наоборот, можете посмотреть в статье «Пропорция спасает».

Как видим, сама скорость мотоциклистов в данном случае  не имеет значения.

Ответ: 33

Решите самостоятельно:

Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 14 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 21 км/ч больше скорости другого?

Посмотреть решение

Из одной точки круговой трассы, длина которой равна 25 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 112 км/ч, и через 25 минут после старта он опережал второй автомобиль на один круг.  Найдите скорость второго автомобиля. Ответ дайте в км/ч.

Данную задачу так же можно интерпретировать, то есть представить её, как задачу на прямолинейное движение. Как? Просто …

Два автомобиля одновременно начинают движение в одном направлении. Скорость первого равна 112 км/ч. Через 25 минут он опережает второго на 25 км (т.к. сказано, что на один круг). Найти скорость второго. Очень важно в задачах на движение представить сам процесс этого движения.

Сравнение произведем по расстоянию, так как нам известно, что один опередил другого на 25 километров.

За x принимаем искомую величину – скорость второго. Время движения 25 минут (25/60 часа) для обоих.  

Заполним графу «расстояние»:

Расстояние, пройденное первым, больше расстояния, который прошёл второй на 25 км. То есть:

Скорость второго автомобиля 52  (км/ч).

Ответ: 52

Решите самостоятельно:

Из одной точки круговой трассы, длина которой равна 14 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 80 км/ч, и через 40 минут после старта он опережал второй автомобиль на один круг.  Найдите скорость второго автомобиля. Ответ дайте в км/ч.

Посмотреть решение

Из пункта A круговой трассы выехал велосипедист, а через 40 минут следом за ним отправился мотоциклист. Через 8 минут после отправления он догнал велосипедиста в первый раз, а еще через 36 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.

Данная задача представляет относительную сложность. Что сразу стоит отметить? Это то, что мотоциклист  проходит  с велосипедистом одинаковое расстояние, догоняя его первый раз. Затем он снова догоняет его второй раз, при чём разница пройденных расстояний после первой встречи составляет 30 километров (длина круга). Таким образом, можно будет составить два уравнения и решить их систему. Нам не даны скорости участников движения, поэтому можно будет ввести две переменные. Система из двух уравнений с двумя переменными решается.

Итак, переведем минуты в часы, поскольку скорость надо найти в км/ч.

Сорок минут это 2/3 часа, 8 минут это 8/60 часа, 36 минут это 36/60 часа.

Скорости участников обозначим за х км/ч (у велосипедиста) и у км/ч (у мотоциклиста).

В первый раз мотоциклист обогнал велосипедиста через 8 минут, то есть через 8/60 часа после старта.

До этого момента велосипедист был в пути уже  40+8=48 минут, то есть  48/60 часа.

Запишем эти данные в таблицу:

Оба проехали одинаковые расстояния, то есть

Затем мотоциклист второй раз догнал велосипедиста. Произошло это через 36 минут, то есть через 36/60 часа после первого обгона.

Составим вторую таблицу, заполним графу «расстояние»:

Так как сказано, что через 36 минут мотоциклист снова догнал велосипедиста. Значит, он (мотоциклист)  проехал расстояние равное 30 километрам (один круг) плюс расстояние, которое за это время проехал велосипедист. Это ключевой момент для составления второго уравнения.

Один круг — это длина трассы, она равна 30 км.

Получаем второе уравнение:

Решаем систему их двух уравнений:

Значит   у = 6 ∙10 = 60.

То есть скорость мотоциклиста равна 60 км/ч.

Ответ: 60

Решите самостоятельно:

Из пункта A круговой трассы выехал велосипедист, а через 30 минут следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.

Посмотреть решение

Следующий тип задач на круговое движение вообще «уникален». Есть задачи, которые решаются устно. И есть такие, которые без глубокого понимания и большой внимательности при рассуждениях решить крайне сложно. Речь идёт о задачах про стрелки часов.

Вот пример простейшей задачи:

Часы со стрелками показывают 11 часов 20 минут. Через сколько минут минутная стрелка в первый раз поравняется с часовой?

Ответ очевиден, через 40 минут, когда будет ровно двенадцать. Даже если сразу не смогли понять, то нарисовав  циферблат (сделав эскиз) на листке, вы без труда определите ответ.

Примеры других задач (непростых):

Часы со стрелками показывают 6 часов 35 минут. Через сколько минут минутная стрелка в пятый раз поравняется с часовой?

Часы со стрелками показывают 2 часа ровно. Через сколько минут минутная стрелка в десятый раз поравняется с часовой?

Часы со стрелками показывают 4 часа 45 минут. Через сколько минут минутная стрелка в седьмой раз поравняется с часовой? 

Решить самостоятельно:

Часы со стрелками показывают 8 часов 00 минут. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?

Посмотреть решение

Вы убедились, что запутаться очень легко?

Вообще, я не сторонник давать подобные советы, но здесь он нужен, так как на ЕГЭ с такой задачей можно легко запутаться, вычислить неверно или просто потерять много времени на решение.

Вы можете решить данную задачу за одну минуту. Как? Просто!

Возьмите с собой на ЕГЭ механические часы со стрелками… Догадались?

Если вам попадёт такая задач, то берёте часы, ставите исходное время оговоренное в условии  (например, 6:35) и прокручиваете заданное число раз. А затем смотрите: сколько «отмотали» минут от исходного времени. Вот и всё.

А когда вам будет нечем заняться, тогда пожалуйста решайте подобные задачи математическими методами 😉 Есть ещё одна хитрость, с помощью которой вы можете быстро решить такую задачу без вычислений и механических часов.

Расскажу об этом в будущем, не пропустите! В данной рубрике продолжим рассматривать задачи.

На этом всё. Успехов Вам!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.


Подготовка к ОГЭ по математике. Полный курс!

Школа репетиторов Анны Малковой. Супер тренинг!

Онлайн-обучение, подготовка к ЕГЭ и ОГЭ по предметам!

50 базовых упражнений лечебной физкультуры!

Отзывов (4)
  1. Виктор

    Александр,на счет конкурсной задачи.

    У меня получилось,что минутная стрелка поравняется c часовой:

    1. Через 42 минуты

    2.Через 65 минуты

    3.65 минут

    4.66 минут

    5.66 минут

    6.66 минут

    7.65 минут

    Итого 435 минут.Верно?

  2. Александр Крутицких

    Да! Поздравляю! Жду номер телефона на email.

  3. Анастасия

    На самом деле эти задачи можно решать в одно дейсвие...например возьмем задачу с сайта.

    Часы со стрелками показывают 8 часов 00 минут. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?

    Просто нужно 4 умножить на 60 (это градусы) и получиться ответ 240.

    Со второй задачей тоже нет проблем. Часы со стрелками показывают 4 часа 45 минут. Через сколько минут минутная стрелка в седьмой раз поравняется с часовой?

    Точно так же 7 умножаем на 60=420... а теперь разбираемся с минутами — просто от 60-45=15 и последние действие 420+15=435.

  4. Марина

    у меня получилось 432 мин не пойму где ошибка?

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*