Здравствуйте! Продолжаем рассматривать задачи входящие в состав экзамена по математике. Задания, которые мы рассмотрим ниже, по-большому счёту, никаких глубоких знаний теории не требуют. Для их решения необходимо понимание геометрического смысла производной, умение решать квадратное уравнение и немного логики.
Суть заданий следующая: дана парабола вида у = ах2+bх+c и касательная к этой параболе у=kх+b. Один из коэффициентов (a, b или c) неизвестен и его необходимо найти.
Как решать такие задачи? Что необходимо вспомнить?
1. Если даны уравнения двух функций, то точка (точки) пересечения их графиков находится путём решения системы этих уравнений. Пара (х;у) являющаяся решением системы есть точка пересечения графиков (или пары, если точек пересечения больше).
2. Если к графику функции проведена касательная, то производная этой функции в точке касания равна угловому коэффициенту этой касательной (см. ссылку выше).
Рассмотрим задачи (показаны два способа решения):
Прямая у=х+7 является касательной к графику функции ах2–15х+15. Найдите a.
Прямая и график данной функции имеют одну общую точку, это значит, что данные уравнения можно внести для решения в одну систему, но этих уравнений будет недостаточно для решения (кроме неизвестных х и у имеется ещё параметр а).
Известно, что производная функции в данной точке равна угловому коэффициенту касательной у = kх + b (где k это угловой коэффициент), то есть f′(xo) = k. Это третье уравнение, запишем систему:
Подставим из второго уравнения в первое:
Найдём а, подставим х = 1 в ах2 – 15х + 15 = х + 7 или в 2ах – 15 = 1
Второй способ:
По смыслу задачи параметр a ≠ 0, график заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнение ах2 – 15х + 15 = х + 7 имело единственно решение:
Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю:
Ответ: 8
Решите самостоятельно:
Прямая у=3х+1 является касательной к графику функции ах2+2х+3. Найдите a.
Прямая у=5х–8 является касательной к графику функции 6х2 + bх + 16
Найдите b, учитывая, что абсцисса точки касания больше 0.
Прямая и парабола пересекаются в одной точке, поэтому оба уравнения можно внести в систему, но она не решаема, так как имеем три неизвестных:
Известно, что производная функции в данной точке равна угловому коэффициенту касательной у = kх + b (где k это угловой коэффициент), то есть f′(xo) = k. Это третье уравнение, запишем систему:
Кратко можно сказать так:
Условия касания графика функции f (x) = k и прямой у = kх + b задаётся системой требований:
Решаем систему:
По условию, абсцисса точки касания положительна, значит х = 2.
Таким образом,
Второй способ:
График заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнение
имело единственно решение. Преобразуем:
Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю:
Теперь определим, при каком значении b абсцисса точки касания будет больше нуля. Можно подставить поочерёдно полученные значения в систему:
Далее решить её и сдать вывод. Верным решением будет то значение b, при котором получим положительную абсциссу.
Но мы сразу подставим их (поочерёдно) в 28х2 + (b – 5) + 24 = 0.
Таким образом, b = – 19 (при этом значении абсцисса точки касания положительна).
Ответ: – 19
Решить самостоятельно:
Прямая у = –5х+8 является касательной к графику функции 28х2 + bх + 15.
Найдите b, учитывая, что абсцисса точки касания больше 0.
Прямая у=–6х–2 является касательной к графику ф-ии 18х2+6х+с. Найдите c.
Условия касания графика функции у = f (x) и прямой у = kx + b задаётся системой требований:
Решаем систему:
Второй способ:
График заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнениеимело единственное решение, преобразуем:Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю, значит:Ответ: 0
Решить самостоятельно:
Прямая у=3х+4 является касательной к графику функции 3х2–3х+с. Найдите c.
Как видим, понимание способа нахождения точки пересечения графиков функций, заключающееся в решении системы, пригодилось при решении указанных задач (на ЕГЭ могут быть и другие). Но какие бы они не были, если чётко уясните геометрический смысл производной, проблем с подобными у вас не будет.
В данной рубрике продолжим рассматривать задачи, не пропустите!
Имеется круглая мишень радиуса R. На ней отмечены две окружности, радиусы которых равны 1/3 и 2/3 от радиуса мишени. Какова вероятность того, что кинутый в мишень дротик попадёт в закрашенную часть мишени? Результат округлите до тысячных.
*Учесть, что дротик мимо мишени попасть не может.
Тот учащийся, который первый напишет верный ответ, получит поощрительный приз в размере 150 рублей 😉
Надеюсь материал был вам полезен. Успехов Вам!
С уважением, Александр
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.
0,25 ответ в конкурсной задаче
Елена нет, жду правильного ответа. подсказка: используется формула классической вероятности.
Александр,ответ в конкурсной задаче действительно 0,556?Как так?
Да, верно! Постараюсь в следующей статье по теории вероятности пояснить.
По представленным материалам и к ЗНО можно подготовиться. Математика она везде математика.
1/8=0.125