ВЫБЕРИ репетитора! Промокод на скидку 25283
ЗАМУЧИЛИ БОЛИ В СПИНЕ?

Найдите наибольшее значение функции у=х^3-3х+4 на отрезке [-2;0]

В прошлой статье мы рассмотрели задания на определение точек максимума (минимума) степенной функции. Здесь представлено 7 примеров со степенной функцией. Требуется определить наибольшее (или наименьшее) значение функции на интервале. На блоге уже рассматривались подобные примеры функций с числом е, логарифмические, тригонометрические, рациональные.

Стандартный алгоритм решения таких заданий предполагает после нахождения нулей функции, определение знаков производной на интервалах. Затем вычисление значений в найденных точках максимума (или минимума) и на границе интервала, в зависимости от того какой вопрос стоит в условии. 

Советую поступать немного по-другому. Почему? Писал об этом здесь.

Предлагаю решать такие задания следующим образом:

1. Находим производную.
2. Находим нули производной.
3. Определяем какие из них принадлежат данному интервалу.
4. Вычисляем значения функции на границах интервала и точках п.3.
5. Делаем вывод (отвечаем на поставленный вопрос).

В ходе решения представленных примеров подробно не рассмотрено решение квадратных уравнений, это вы должны уметь делать. Так же должны знать производные элементарных функций.

Рассмотрим примеры:

77422. Найдите наибольшее значение функции у=х3–3х+4 на отрезке [–2;0].

Найдём производную заданной функции:

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = –1.

Вычисляем значения функции в точках   –2, –1 и 0:

Наибольшее значение функции равно 6.

Ответ: 6

77425. Найдите наименьшее значение функции у = х3 – 3х2 + 2 на отрезке [1;4].

Найдём производную заданной функции:

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = 2.

Вычисляем значения функции в точках  1, 2 и 4:

Наименьшее значение функции равно –2.

Ответ: –2

77426. Найдите наибольшее значение функции у = х3 – 6х2 на отрезке [–3;3].  

Найдём производную заданной функции:

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = 0.

Вычисляем значения функции в точках  –3, 0 и 3:

Наименьшее значение функции равно 0.

Ответ: 0

77429. Найдите наименьшее значение функции у = х3 – 2х2 + х +3 на отрезке [1;4] .

Найдём производную заданной функции:

Найдем нули производной, решаем квадратное уравнение:

2 – 4х + 1 = 0

Получим корни:  х1 = 1    х1 = 1/3.   

Указанному в условии интервалу принадлежит  только х = 1.

Найдём значения функции в точках  1 и 4:

Получили, что наименьшее значение функции равно 3.

Ответ: 3

77430. Найдите наибольшее значение функции у = х3 + 2х2 + х + 3 на отрезке [– 4; –1].

Найдём производную заданной функции:

Найдем нули производной, решаем квадратное уравнение:

2 + 4х + 1 = 0

Получим корни:

Указанному в условии интервалу принадлежит  корень х = –1.

Находим значения функции в точках  –4, –1, –1/3 и 1:

Получили, что наибольшее значение функции равно 3.

Ответ: 3

77433. Найдите наименьшее значение функции у = х3 – х2 – 40х +3 на отрезке [0;4].

Найдём производную заданной функции:

Найдем нули производной, решаем квадратное уравнение:

 3х2 – 2х – 40 = 0

Получим корни:

Указанному в условии интервалу принадлежит  корень х = 4.

Находим значения функции в точках  0 и 4:

Получили, что наименьшее значение функции равно   –109.

Ответ: –109

Рассмотрим способ определения наибольшего и наименьшего значения функций без производной. Этот подход можно использовать, если с определением производной у вас большие проблемы. Принцип простой – в функцию подставляем все целые значения из интервала (дело в том, что во всех подобных прототипах ответом является целое число).

77437. Найдите наименьшее значение функции у=7+12х–х3 на отрезке [–2;2].

Подставляем точки от  –2  до  2:

у(–2)=7+12 (–2) – (–2)3 = – 9

у(–1)=7+12 (–1) – (–1)3 = – 6

у(0)=7+12∙0 – 03 = 7

у(1)=7+12∙1 – 13 = 18

у(2)=7+12∙2 – 23 = 23

Наименьшее значение равно –9.

Ответ: –9

77441. Найдите наименьшее значение функции у=9х2–х3 на отрезке [–2;2].

Подставляем точки от  –2  до  2:

у(–2)=9 (–2)2 – (–2)3 = 44

у(–1)=9 (–1)2 – (–1)3 = 10

у(0)=9∙02 – 03 = 0

у(1)=9∙12 – 13 = 8

у(2)=9∙22 – 23 = 28

Наименьшее значение равно 0.

Ответ: 0

77442. Найдите наибольшее значение функции у=9х2–х3 на отрезке [2;10].

Подставляем точки от 2  до 10. В данном примере интервал большой и вычислений будет больше, но способ вполне применим.

Ответ: 108

*Чем меньше интервал, тем быстрее решите задачу.

 

77421. Найдите наименьшее значение функции у=х3 –27х на отрезке [0;4].

Посмотреть решение

77434. Найдите наибольшее значение функции у=х3 + 2х2 – 4х + 4 на отрезке  [–2;0].

Посмотреть решение

На этом всё. Успеха вам!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.


НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Замучили боль и скованность в мышцах спины?

Отзывов (4)
  1. лана

    Спасибо, Александр.Вы очень помогли моей девочке.

  2. Степан

    Нашел ответ.  Александр, большое спасибо.

  3. Алексей

    Вариант без производной — просто отличный! Спасибо большое.

  4. Миша

    ошибка в первом примере не y (-2) а y (0)

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

пять − два =

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.