Самые хитрые задачи на ЕГЭ по математике
ШКОЛА ЕГЭ! Сорви максимум баллов!

Архив за Решение треугольников

Окружность вписана в треугольник

Окружность вписана в треугольник. В данной статье собрал для вас задачи, в которых даётся треугольник с вписанной в него или описанной около него окружностью. В условии ставится вопрос о нахождении радиуса окружности или стороны треугольника. 

Данные задания удобно решать используя представленные формулы. Рекомендую их выучить, бывают очень полезны не только при решении этого типа заданий. Одна формула выражает связь радиуса вписанной в треугольник окружности с его сторонами и площадью, другая радиус описанной около треугольника окружности также с его сторонами и площадью:

где a, b, c –  стороны треугольника

S – площадь треугольника

Далее

На рисунке угол 1 равен

Продолжаем рассматривать задачи по планиметрии. В прошлой статье было представлено несколько задач на вычисление углов треугольника, здесь изложено ещё четыре задания. При решении используется свойство углов четырёхугольника, оно было описано в этой статье. Также используется признак равенства треугольников и свойство биссектрисы. Рассмотрим задачи:

В треугольнике ABC угол A равен 200, угол В равен 800, CD  — биссектриса внешнего угла при вершине C, причем точка D лежит на прямой AB. На продолжении стороны AC за точку C выбрана такая точка E, что CE=CB. Найдите угол BDE. Ответ дайте в градусах.

Далее

В треугольнике ABC CH высота

Продолжаем рассматривать задачи на вычисление углов в треугольнике. Рекомендую посмотреть уже опубликованные на блоге статьи «Сумма углов треугольника. Часть 1» и «Вычисление углов в треугольнике. Часть 2». Теории здесь минимум. Необходимо знать теорему о сумме углов треугольника, признаки равенства треугольников, что такое биссектриса, свойства равнобедренного треугольника.

Каковы рекомендации? Если сходу не видите путь решения, то действуйте по принципу «Что я могу найти исходя из условия?». Если вам известны два угла в треугольнике, то найдите третий и смотрите, что можно найти далее. Не забывайте о свойствах биссектрисы угла и прочее.

Рассмотрим задачи:

В треугольнике ABC угол C равен 460, AD и BE  — биссектрисы, пересекающиеся в точке O. Найдите угол AOB. Ответ дайте в градусах.

Далее

В треугольнике ABC угол A равен

Продолжаем рассматривать задачи, в которых требуется вычислить углы в треугольнике. В статье «Сумма углов треугольника. Часть 1!» уже было представлено решение некоторых задач, посмотрите обязательно. Треугольники  рассматриваются совершенно различные.

Это целая группа заданий, входящих в ЕГЭ, где требуется знание лишь теоремы о сумме углов треугольника. Правда в некоторых задачах необходимо знание ещё некоторых свойств. Например, при решении одной из рассмотренных в этой статье используется свойство связанное с выпуклым четырёхугольником. Напомню его:

Сумма углов четырёхугольника равна 360 градусам

Далее

В треугольнике ABC проведена биссектриса

Теория для решения данных задач задач в предыдущей статье.

27445. В треугольнике АВС угол С равен 118о, АС = ВС. Найдите угол А. Ответ дайте в градусах.

Далее

Острый угол прямоугольного треугольника равен

Для вас несколько заданий — в условии дан прямоугольный треугольник. В условии говорится о вычислении углов между высотой и биссектрисой, медианой и биссектрисой, высотой и медианой проведёнными из прямого угла.

Это группа заданий входит в состав ЕГЭ по математике. Задачи несложные, требуется знание теоремы о сумме углов треугольника, свойств равнобедренного треугольника и немного логики. Да! Есть один нюанс — задачи, в  которых говорится о медиане проведённой к гипотенузе необходимо знать одно свойство, теорию можно посмотреть здесь. Приступим!

Один острый угол прямоугольного треугольника в 4 раза больше другого.  Найдите больший острый угол. Ответ дайте в градусах. Далее

Внешний угол треугольника

Внешний угол треугольника. Продолжаем рассматривать задачи на решение прямоугольного треугольника. Такие типы заданий имеются в прототипах открытого банка заданий по математике. Некоторые примеры мы уже рассмотрели в статьях «Прямоугольный треугольник. Часть 1» и «Прямоугольный треугольник. Часть 2». В этой статье разберём задачи, в которых необходимо определить значения тригонометрических функций внешнего угла треугольника (или внутреннего, когда дано значение внешнего).

Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине

Угол DAB является внешним. Далее