Подготовка к ЕГЭ по математике 2017 бесплатно!
Программируемые LEGO конструкторы! Посмотреть!

Окружность вписана в треугольник

Окружность вписана в треугольник/ В данной статье собрал для вас задачи, в которых даётся треугольник с вписанной в него или описанной около него окружностью. В условии ставится вопрос о нахождении радиуса окружности или стороны треугольника. 

Данные задания удобно решать используя представленные формулы. Рекомендую их выучить, бывают очень полезны не только при решении этого типа заданий. Одна формула выражает связь радиуса вписанной в треугольник окружности с его сторонами и площадью, другая радиус описанной около треугольника окружности также с его сторонами и площадью:

где a, b, c –  стороны треугольника

S – площадь треугольника

Рассмотрим задачи:

27900. Боковая сторона равнобедренного треугольника равна 1, угол при вершине, противолежащей основанию, равен 1200. Найдите диаметр описанной окружности этого треугольника.

Здесь окружность описана около треугольника.

Первый способ:

Диаметр мы сможем найти, если будет известен радиус. Используем формулу радиуса описанной около треугольника окружности:

где a, b, c – стороны треугольника

S –  площадь треугольника

Две стороны нам известны (боковые стороны равнобедренного треугольника), третью мы можем вычислить используя теорему косинусов:

Теперь вычислим площадь треугольника:

*Использовали формулу (2) из этой статьи.

Вычисляем радиус:

Таким образом диаметр будет равен 2.

Второй способ:

Это устные вычисления. Для тех кто имеет навык решения заданий с вписанным в окружность шестиугольником, тот сразу определит, что стороны треугольника АС и ВС «совпадают» со сторонами вписанного в окружность шестиугольника (угол шестиугольника как раз равен 1200, как и в условии задачи). А далее на основании того, что сторона вписанного в окружность шестиугольника равна радиусу этой окружности  не сложно сделать вывод о том, что диаметр будет равен 2АС, то есть двум.

Подробнее о шестиугольнике посмотрите информацию в этой статье (п.5).

Ответ: 2

27931. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу с этого треугольника. В ответе укажите .

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна:

А площадь  треугольника будет  равна 0,5х2.

Значит

Таким образом, гипотенуза будет равна:

В ответе требуется записать:

Ответ: 4

 

27933. В треугольнике ABC АС = 4, ВС = 3, угол C равен 900. Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S –  площадь треугольника

Две стороны известны (это катеты), можем вычислить третью (гипотенузу), также можем вычислить и площадь.

По теореме Пифагора:

Найдём площадь:

Таким образом:

Ответ: 1

 

27934. Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c –  стороны треугольника

S – площадь треугольника

Известны все стороны, вычислим и площадь. Её мы можем найти по формуле Герона:

Тогда

Таким образом:

Ответ: 1,5

 

27624. Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника.

Посмотреть решение

27625. Площадь треугольника равна 24, а радиус вписанной окружности равен 2. Найдите периметр этого треугольника.

Посмотреть решение

27626. Площадь треугольника равна 54, а его периметр 36. Найдите радиус вписанной окружности.

Посмотреть решение

27923. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.

Посмотреть решение

 

27932. Катеты равнобедренного прямоугольного треугольника равны  . Найдите радиус окружности, вписанной в этот треугольник.

Посмотреть решение

Небольшой итог.

Если  в условии дан треугольник и вписанная или описанная окружность, и речь идёт о сторонах, площади, радиусе, то сразу вспомните об указанных формулах и пробуйте использовать их при решении. Если не получается, то тогда уже ищите другие способы решения. 

На этом всё. Успеха вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.


Подготовка к ОГЭ по математике. Полный курс!

Школа репетиторов Анны Малковой. Супер тренинг!

Онлайн-обучение, подготовка к ЕГЭ и ОГЭ по предметам!

50 базовых упражнений лечебной физкультуры!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*