ВЫБЕРИ репетитора! Промокод на скидку 25283
ЗАМУЧИЛИ БОЛИ В СПИНЕ?

Архив за Функции MAX MIN

Рациональная функция (точки макс и мин)

Рациональная функция. В этой статье мы рассмотрим несколько примеров. Требуется определить точки максимума или минимума. Ранее уже были рассмотрены подобные задания с логарифмами, тригонометрическими и степенными функциями.

Рекомендую повторить теорию, необходимую для решения, в том числе приоизводные элементарных функций и правила дифференцирования.

Алгоритм нахождения точек максимума (минимума) функции:

1. Вычисляем производную функции.

2. Приравниваем её к нулю, решаем уравнение.

3. Полученные корни отмечаем на числовой прямой. 

*Также на ней отмечаем точки, в которых производная не существует. Получим интервалы возрастания (убывания) функции.

4. Определяем знаки производной на этих интервалах (подставляя произвольные значения из полученных интервалов в производную).

Рассмотрим задания:

Далее

Найдите наименьшее значение функции y=4tgx–4x–Пи+5 на отрезке

    Здравствуйте! В данной заметке ничего нового, это небольшой довесок к статье, где задания такого типа мы уже рассматривали, поэтому никакой теорией вас загружать не буду, всё уже есть в указанной статье и здесь. Рассмотрим ещё три тригонометрические функции, будет полезно.

Подходы к решению заданий данного типа есть разные. Например, для того, чтобы найти наибольшее (наименьшее) значение функции на отрезке:

Одни ребята (СПОСОБ 1) находят нули производной, затем определяют точки максимума (минимума), и  далее с их учётом вычисляют искомое значение;

Другие (СПОСОБ 2) нули производной тоже вычисляют, но далее точки максимума (минимума) не определяют, просто подставляют в функцию значения на границах отрезка и найденные нули производной (принадлежащие интервалу). Затем приозведя вычисления определяют наибольшее (или наименьшее) значение функции, смотря что требуется в условии.

Лично я сторонник второго подхода. Почему?

*Первый тоже хорош, но есть нюансы, о них скажу далее.

Сначала посмотрите на два графика:

Далее

Найдите наименьшее значение функции y=5cosx–6x+4 на отрезке [–3П/2;0]

   Здравствуйте! В этой статье мы с вами рассмотрим задачи на нахождение наибольшего (наименьшего) значения тригонометрической функции на заданном отрезке. Рассмотрим несколько примеров. Но сначала советую повторить теорию, всё необходимое есть в статье «Исследование функций, это нужно знать!».

На блоге уже рассмотрены подобные задачи с логарифмической функцией, функции с числом е, а также функции в составе которых имеется квадратичная функция (решаются без нахождения производной). Можете ознакомиться со статьёй, в которой мы рассматривали нахождение точек максимума (минимума) тригонометрических функций.

Алгоритм процесса решения прост, кратко напомню:

1. Находим производную.

2. Приравниваем её к нулю и решаем уравнение (находим вероятные точки экстремумов).

3. Далее вычисляем значения данной функции на границах отрезка, также в найденных точках п.2.

4. Определяем наибольшее (наименьшее), в зависимости от поставленного вопроса.

Далее

В какой точке значение производной наибольшее?

Дорогие друзья! В  группу заданий связанных с производной входят  задачи —  в условии дан график функции, несколько точек на этом графике и стоит вопрос:

В какой точке значение производной наибольшее (наименьшее)?

Данные задачи очень просты, не требуется никаких вычислений, решаются устно. Главное что необходимо – это понимать геометрический смысл производной, свойства производной для исследования функций. По представленным ссылкам вы можете повторить (изучить) материал на сайте, также краткая информация есть в справочнике.

Кратко повторим:

Производная в точке равна угловому коэффициенту касательной проходящей через эту точку графика.

Угловой коэффициент касательной в свою очередь равен тангенсу угла наклона этой касательной.

*Имеется ввиду угол между касательной и осью абсцисс.

Далее

Тригонометрическая функция (макс и мин)

Тригонометрическая функция. Продолжаем рассматривать задачи связанные с нахождением точек максимума (минимума). Советую повторить теорию необходимую для решения задач на нахождение наибольшего (наименьшего) значения функции на интервале и на нахождение точек максимума (минимума) функции. В этой статье разберём две задачи в этой теме, рассмотрим тригонометрические функции.  Задачи с логарифмами уже были нами рассмотрены ранее.

Ещё раз запишем алгоритм нахождения точек максимума (минимума) функции:

1. Вычисляем производную функции.

2. Приравниваем её к нулю, решаем уравнение.

3. Полученные корни разбивают числовую ось на интервалы, отмечаем их.

4. Определяем знаки производной на этих интервалах (подставляем произвольные значения из интервалов в производную).

5. Делаем вывод. Далее

На рисунке изображён график производной функции

  Здравствуйте! Ударим по приближающемуся ЕГЭ качественной систематической подготовкой, и упорством в измельчении гранита науки!!! В конце  поста имеется конкурсная задача, будьте первым! В одной из статей данной рубрики мы с вами рассматривали задачи, в которых был дан график функции, и ставились различные вопросы, касающиеся экстремумов, промежутков возрастания (убывания) и прочие.

В этой статье рассмотрим задачи входящие в ЕГЭ по математике, в которых дан график производной функции, и ставятся следующие вопросы: Далее

Решение задач без нахождения производной

Здравствуйте! В этой статье речь пойдёт о задачах, которые можно решать без нахождения производной. В данной рубрике мы уже рассмотрели некоторые примеры с логарифмами, числом е, функции  с произведениямиСмысл заданий тот же –  требуется найти либо точку максимума (минимума) функции, либо определить максимальное (минимальное) значение функции. 

В чём суть и каков «стандартный» алгоритм решения — можно посмотреть в этой статье. Но не для всех заданий применение этого алгоритма будет рационально. Если следовать ему в представленных ниже примерах, то процесс решения будет «перегружен» вычислениями. А потеря времени на экзамене вам не нужна. Так какие же задания имеются ввиду?

В условии дана иррациональная, логарифмическая или показательная функция:

при чём под корнем, под знаком логарифма или в показателе находится квадратичная функция вида: Далее