ВЫБЕРИ репетитора! Промокод на скидку 25283
НОУТБУК за 16000 рублей!

Архив за Вероятность

Стрелок в тире стреляет по мишени

Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,6?

Вероятность попадания в мишень равна 0,2. Значит  вероятность промаха равна  0,8. ИТАК! Вероятность поразить мишень с первого выстрела равна 0,2. Далее

Симметричную монету бросают 10 раз

Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

*Можно использовать формулу Бернулли, если вам она известна. Но в любом случае ее лучше не просто знать, а понимать.

Мы пойдем простыми рассуждениями. Знаем, что вероятность выпадения какой-либо стороны монеты равна одной второй или 0,5.

Пока мы допустим, что орлы выпадают при первых пяти бросках. Указанная вероятность такого события равна:

Далее

При двукратном бросании игральной кости

При двукратном бросании игральной кости в сумме выпало 9 очков. Какова вероятность того, что хотя бы раз выпало 5 очков?

Все варианты с суммой 9 это: 3 и 6, 4 и 5, 5 и 4, 6 и 3. Выражение «хотя бы раз» означает — раз или более. Как видим всего вариантов выпадения 4. Два из них с пятеркой. Искомая вероятность равна 2 из 4. Или 2:4=0,5.

Ответ 0,5

Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что во второй раз выпало 3 очка. Далее

При артиллерийской стрельбе автоматическая система

   Дорогие друзья! Экзамен стремительно приближается. Не смотря на предэкзаменационную суету пожелаю вам спокойствия и уверенности, разумеется, не забывайте систематически готовиться. В данной статье мы с вами рассмотрим две задачи. Они несложные, но некоторые затруднения вызвать могут. 

В задаче про агрофирму (и подобных) важно изначально правильно обозначить события. Акцентируйте внимание на данные в условии и поставленный вопрос, тогда с обозначением событий трудностей не будет. Рекомендую ознакомится со статьёй «Сложение и умножение вероятностей» и посмотреть эти задачиРассмотрим задачи:

Агрофирма закупает куриные яйца в двух домашних хозяйствах. 50% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 25% яиц высшей категории. Всего высшую категорию из закупленных яиц получает 45%. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Обозначим события Далее

На рисунке изображён лабиринт. Паук

Задача про паука. Друзья! В этой статье разберём задачи про паука, который «путешествует» по лабиринту. Задания по теории вероятностей — это целая группа заданий. Для их решения требуется понимание основ теории, знание правил сложения и умножения вероятностей.

Решение первой задачи размещено на сайте, но меня попросили разобрать её ещё подробнее. Вторая задача из тренировочного варианта. Она отличается от первой, но сложной не является. Приступим:

На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D.

Далее

Из районного центра в деревню + ещё 4 задачи

    Здравствуйте, Дорогие друзья! В этой статье рассмотрим с вами пять задач по теории вероятностей. Задачи эти несколько отличаются от других типов из единого банка заданий, и требуют более глубокого понимания теории по сравнению с задачами на использование классической формулы вероятностей. Но нужно быть готовыми ко всему. Будет полезно посмотреть статью, где речь идёт об умножении вероятностей.

Кроме того, в задаче про чайник требуется ваша помощь, подробности ниже, после решения самой задачи. Рассмотрим задачи:

Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 30 пассажиров, равна 0,93. Вероятность того, что окажется меньше 21 пассажиров, равна 0,5. Найдите вероятность того, что число пассажиров будет от 21 до 29. Далее

Ковбой Джон попадает в муху

   Здравствуйте, друзья! Эта статья является продолжением статьи «Сложение и умножение вероятностей. Часть 1». В ней мы рассмотрели основы необходимой  теории и решили несколько задач. Здесь вас ждёт ещё четыре. Рассмотрим их:

Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,2. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

То есть нам необходимо найти вероятность события, когда не перегорят обе лампы, либо не перегорит только первая лампа, либо не перегорит только вторая лампа. Далее