Самые хитрые задачи на ЕГЭ по математике
ШКОЛА ЕГЭ! Сорви максимум баллов!

Архив за 29.12.2012

Бросают три игральные кости

Дорогие друзья! В этой статье мы рассмотрим задачу по теории вероятностей про три игральные кости. Отмечу, что как и в предыдущих статьях, решение будет без формул комбинаторики. Разберём, как говорят в народе, «на пальцах» (для того, чтобы вы понимали, как можно с помощью простых логических рассуждений решать подобные задания). Итак, задача:

Бросают три игральные кости. Какова вероятность того, что  в сумме выпадет 15 очков? Далее

Биатлонист стреляет по четырем мишеням!

Задача про выстрелы по мишени. Дорогие друзья! В этой статье мы с вами рассмотрим задачу, которая была в одном из тренировочных вариантов ЕГЭ. Формулы теории вероятностей, конечно, знать нужно. Но, как уже было сказано ранее, для решения большинства типов задач, достаточно простой логики и знания классической формулы вероятностей. При решении этой задачи используется формула умножения вероятностей событий, в будущем мы также будем рассматривать задания с применением этой формулы.

Внимание! Допустим происходят какие-то отдельные события. Они не связаны друг с другом (происходят независимо), то есть возможны разные варианты их исходов. Например, при стрельбе из оружия при каждом отдельном выстреле стрелок может попасть или промахнуться. При бросании монеты несколько раз выпадение орла (решки) во второй и последующий разы никак не зависит и не связано с результатом предыдущего броска. Далее

Теорема косинусов

Теорема косинусов и теорема Пифагора. В этой статье мы рассмотрим теорему косинусов и как она используется для нахождения элементов треугольника. А так же разберём её взаимосвязь с теоремой Пифагора.

Знать эту теорему НЕОБХОДИМО. Что мы можем найти, используя её? Далее

Кто ты? Технарь или гуманитарий?

  Здравствуйте, Дорогие друзья! В этой статье  не будет решений, математики и рассуждений о  ЕГЭ. Решил  написать о более важном и значимом. Вы, наверное, не раз слышали, как про человека говорят, что  у него склонность к точным или гуманитарным наукам. Или по другому: «он технарь» или «он гуманитарий».

Далее

Степенная функция (максимум минимум)

  Степенная функция. В данной статье мы рассмотрим вычисление максимума (минимума) указанной функции. В предыдущей статье  мы с вами рассмотрели задачи на нахождение максимума (минимума) функции с числом «е». Здесь представлены примеры без числа «е». Некоторые примеры, в которых требуется найти наибольшее или наименьшее значение функции, вообще можно решить без нахождения производной.

В любом случае, советую вам ознакомится с этой  статьёй, если вы ещё этого не сделали. Рассмотрим задачи:

Найдите точку максимума функции у = (х – 2)2(х – 4)+5

Далее

Исследование функций с числом «е»

  Функции с числом е. Друзья! На сайте «Математический тандем» проходит конкурс «Лучший комментатор декабря 2012 года», так что добро пожаловать, будут призы. В данной статье мы с вами рассмотрим задачи, входящие в сотав типовых заданий экзамена по математике, связанные с исследованием функций (где присутствует число е).

Рекомендую вам ещё раз внимательно прочитать статью «Исследование функций. Это нужно знать!» и освежить в памяти изложенную информацию. Не устану повторять, что для того чтобы решать задачи на нахождение наибольшего или наименьшего значения, задачи на нахождение экстремумов, важно понимать свойства производной для исследования функций, знать таблицу производных и правила дифференцирования.

После решения каждой задачи есть разъяснения другого подхода к решению (я обещал вам «хитрости»  они здесь). Рекомендую посмотреть, выглядит график показательной функции.

Рассмотрим задачи:

Найдите наименьшее значение функции у = (х–17)ех–16 

на отрезке [15;17].

Далее

Задачи с логарифмами

Продолжаем рассматривать прикладные задачи, которые входят в состав ЕГЭ по математике. Если вы не читали статью «Задачи по физике. Это не страшно!», то советую с ней ознакомиться. В этой статье речь пойдёт о задачах, где используется понятие логарифма. Повторюсь, что в решении таких задач нет сложностей. Необходимо в данную в условии формулу подставить исходные величины. В данных задачах решение их сводится к решению логарифмического уравнения, либо неравенства.

Что необходимо знать о логарифме?

1. Основное логарифмическое тождество.

Определение: Логарифмом числа  a  по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.

logb a = x     bx = a  

(a > 0, b > 0, b ≠ 1) Далее