Научись решать задачи ЕГЭ за пару минут!
ПОДГОТОВКА К ЕГЭ В ЧЕЛЯБИНСКЕ!

Архив за Стереометрия КОНУС ЦИЛИНДР

Объём части конуса

Объём части конуса. Для вас очередная статья с конусами – тип заданий, которые ранее присутствовали в открытом банке задач и вполне могут быть в составе ЕГЭ по математике. *На момент написания статьи эти задания из открытого банка удалены, но их всегда могут вернуть вновь.

Суть вопроса заключается в нахождении объёма части конуса. На блоге уже есть статья с заданиями, условия которых связаны с объёмом конуса, можете посмотреть.

Если сказать простым языком – рассматриваемое тело построено («стоит») на секторе круга, то есть нам необходимо найти объём некоторого «сектора конуса». Посмотрите для наглядности, это рисунки из задач:

Как вы догадались – процесс решения прост!

Главное определить центральный угол сектора круга, на котором построена («стоит») часть конуса.

Формула объёма конуса:

Далее

Площадь полной поверхности конуса равна

Здесь представлены задачи с конусами, условие связано с его площадью поверхности. В частности в некоторых задачах стоит вопрос об изменении площади при увеличении (уменьшении) высоты конуса или радиуса его основания. Теория для решения задач в предыдущей статье. Рассмотрим следующие задачи:

27135. Длина окружности основания конуса равна 3, образующая равна 2. Найдите площадь боковой поверхности конуса.

Далее

Площадь поверхности конуса

Площадь поверхности конуса. Рекомендую посмотреть предыдущую статью. Указанная формула используется в ряде типов заданий экзамена. Сами задачи можно посмотреть в следующей статье. В представленных примерах речь идет о площади боковой поверхности конуса. Необходимо знать формулу, по которой она вычисляется:

где   l – длина окружности основания

L – образующая

Далее

Во сколько раз увеличится объем

   Здравствуйте, Дорогие друзья! В этой статье рассмотрим пару задач, в которых речь идёт об объёме конуса. В прошлой статье мы уже рассмотрели несколько заданий. Суть простая – стоит условие об уменьшении (увеличении) высоты конуса или радиуса в определённое. Ставится вопрос о том, как изменился объём.  Ещё раз формула объёма конуса:

Сначала рассмотрим задачи, а затем изложу пару рекомендаций к решению.

27094. Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 3 раза?

Далее

В сосуде, имеющем форму конуса

Рассмотрим ряд заданий связанных с понятием объёма конуса. Теория была представлена здесь, посмотрите.

72353. Объем конуса равен 10. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.

Далее

В цилиндрический сосуд налили

Друзья! В заданиях ЕГЭ по математике встречаются задачи, в которых речь идёт о погружении детали в жидкость или о переливании жидкости из одного сосуда в другой. Вопросы в условии связаны с нахождением объёма погружаемого в жидкость тела или с нахождением какого-либо параметра сосуда. Форма сосуда может быть различной: цилиндр, призма.

Что необходимо понимать? Если жидкость залита в цилиндрический сосуд, то она принимает форму цилиндра. Если она залита в имеющий форму призмы, то соответственно принимает форму призмы. Это означает, что формулы для объёмов цилиндра и призмы работают и для объёмов жидкостей помещённых в такие сосуды.

Формула объёма цилиндра (и призмы):

Если жидкость переливается в аналогичный сосуд с меньшим основанием, уровень (высота) жидкости увеличивается; если в сосуд с большим основанием, то уровень жидкости уменьшается.

Рекомендации! Далее

Высота конуса равна ...

В этой статье рассмотрим задачи на нахождение элементов  конуса. Конечно же, их можно отнести к одним из самых простых задач, которые входят в открытый банк заданий ЕГЭ по математике.

Как и многие задачи этой части, решаются они в одно-два действия. Несмотря на то, что это это стереометрическая задача, для решения достаточно знать теорему Пифагора. Рассмотрим задачи:

Высота конуса равна 57, а диаметр основания — 152. Найдите образующую конуса.
Рассмотрим осевое сечение конуса. По теореме Пифагора: