ВЫБЕРИ репетитора! Промокод на скидку 25283
НОУТБУК за 16000 рублей!

Архив за 29.09.2013

Сумма векторов. Длина вектора. Задачи!

    Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Понятие вектора

Вектор — это направленный отрезок.

Все векторы, имеющие одинаковое направление и равные по длине являются равными.

Далее

Острый угол прямоугольного треугольника равен

Для вас несколько заданий — в условии дан прямоугольный треугольник. В условии говорится о вычислении углов между высотой и биссектрисой, медианой и биссектрисой, высотой и медианой проведёнными из прямого угла.

Это группа заданий входит в состав ЕГЭ по математике. Задачи несложные, требуется знание теоремы о сумме углов треугольника, свойств равнобедренного треугольника и немного логики. Да! Есть один нюанс — задачи, в  которых говорится о медиане проведённой к гипотенузе необходимо знать одно свойство, теорию можно посмотреть здесь. Приступим!

Один острый угол прямоугольного треугольника в 4 раза больше другого.  Найдите больший острый угол. Ответ дайте в градусах. Далее

Виды треугольников

Виды треугольников. В следующей статье речь пойдёт о задачах на решение прямоугольного треугольника. Эти задания не связаны с нахождением сторон, синуса, косинуса, тангенса или котангенса углов, такие мы уже рассматривали.  

Сначала основная теория о треугольниках для тех, кто её подзабыл, и для всех, кто хочет повторить 😉

Далее

Теорема Пифагора

Теорема Пифагора и её связь с тремя формулами. В одной из статей мы рассматривали взаимосвязь теоремы Пифагора и теоремы косинусов. Здесь хочу вам рассказать о нескольких формулах, в основе которых лежит теорема Пифагора. Вся прелесть в том, что понимая это, нет необходимости учить представленные ниже формулы. Не раз слышал — мол, как это возможно выучить столько формул в математике?

Ещё раз подчеркну, что выучить необходимо только четверть всех формул или даже меньше. Остальные можно быстро вспомнить или восстановить в памяти, если вы поняли их смысл и понимаете логические связи этих формул с другими.  Итак, сама теорема Пифагора. Рассмотрим прямоугольный треугольник:

ТЕОРЕМА! Квадрат гипотенузы равен сумме квадратов катетов.

Далее

Вписанный угол, теория и задачи

Вписанный угол, теория задачи. Друзья! В этой статье речь пойдёт о заданиях, для решения которых необходимо знать свойства вписанного угла. Это целая группа задач, они включены в ЕГЭ. Большинство из них решаются очень просто, в одно действие.

Есть задачи посложнее, но и они большой трудности для вас не представят, необходимо знать свойства вписанного угла. Постепенно мы разберём все прототипы задач, приглашаю вас на блог!

Теперь необходимая теория. Вспомним, что такое центральный и вписанный угол, хорда, дуга, на которые опираются эти углы:

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Часть окружности, расположенная внутри плоского угла, называется дугой окружности.

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Угол, называется вписанным в окружность, если вершина угла лежит на окружности, а стороны угла пересекают эту окружность.

Далее

Длина отрезка. Середина отрезка

Длина отрезка. Существует целая группа заданий (входящих в экзаменационные типы задач), связанная с координатной плоскостью. Это задачи начиная с самых элементарных, которые  решаются устно (определение ординаты или абсциссы заданной точки, либо точки симметричной заданной и другие), заканчивая задачами в которых требуется качественное знание, понимание и хорошие навыки (задачи связанные с угловым коэффициентом прямой).

Постепенно мы с вами рассмотрим все их. В этой статье начнём с элементарных. Это простые задачи на определение: абсциссы и ординаты точки, длинны отрезка, середины отрезка, синуса или косинуса угла наклона прямой. Большинству эти задания будут не интересны. Но изложить их считаю необходимым.

Дело в том, что не все учатся в школе. Очень многие сдают ЕГЭ спустя 3-4 и более лет после её окончания и что такое абсцисса и ордината помнят смутно. Будем разбирать и другие задачи, связанные с координатной плоскостью, не пропустите, подпишитесь, на обновление блога. Теперь немного теории. Далее

Формула Пика

Формула Пика. Рассказ о формуле, при помощи которой можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник). Это формула Пика.

Она секретной не является. Информация о ней в интернете имеется, но многим материал статьи будет крайне полезен. Об этой формуле обычно рассказывается применительно к нахождению площади треугольника. На примере треугольника мы её и рассмотрим.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

ФОРМУЛА ПИКА

Площадь искомой фигуры можно найти по формуле:

М – количество узлов на границе треугольника (на сторонах и вершинах)

N – количество узлов внутри  треугольника

Далее