Уравнение прямой проходящей через две точки. В статье "Геометрический смысл производной. Часть 1" я обещал вам разобрать второй способ решения представленных задач на нахождение производной, при данном графике функции и касательной к этому графику. Этот способ мы разберём в следующей статье, не пропустите! Почему в следующей?
Дело в том, что там будет использоваться формула уравнения прямой. Конечно, можно было бы просто показать данную формулу и посоветовать вам её выучить. Но лучше объяснить – от куда она исходит (как выводится). Это необходимо! Если вы её забудете, то быстро восстановить её не представит труда. Ниже подробно всё изложено. Итак, у нас на координатной плоскости имеется две точки А(х1;у1) и В(х2;у2), через указанные точки проведена прямая: Далее