Дорогие друзья! Для вас очередная статья с призмами. Имеется в составе экзамена такой тип заданий, в которых требуется определить объём многогранника. При чём он дан не в «чистом виде», а сначала его требуется построить. Я бы выразился так – его нужно «увидеть» в другом заданном теле.
Статья на с такими заданиями уже была на блоге, посмотрите. В представленных ниже заданиях даются прямые правильные призмы – треугольная или шестиугольная. Если совсем позабыли что такое призма, то вам сюда.
В правильной призме в основании лежит правильный многоугольник. Следовательно в основании правильной треугольной призмы лежит равносторонний треугольник, а в основании правильной шестиугольной призмы лежит правильный шестиугольник.
При решении задач используется формула объёма пирамиды, рекомендую посмотреть информацию в этой статье. Так же будет полезно посмотреть статью с параллелепипедами, принцип решения заданий схож. Ещё раз посмотрите формулы, которые необходимо знать.
Объём призмы:
Объём пирамиды:
245340. Найдите объем многогранника, вершинами которого являются точки А, В, С, А1 правильной треугольной призмы АВСА1В1С1, площадь основания которой равна 2, а боковое ребро равно 3.
Построим указанный многогранник на эскизе:
Получили пирамиду с основанием АВС и вершиной А1. Площадь её основания равна площади основания призмы (основание общее). Высота также общая. Объём пирамиды равен:
Ответ: 2
245341. Найдите объем многогранника, вершинами которого являются точки А, В, С, А1, С1, правильной треугольной призмы АВСА1В1С1, площадь основания которой равна 3, а боковое ребро равно 2.
Построим указанный многогранник на эскизе:
Это пирамида с основанием АА1С1С и высотой равной расстоянию между ребром АС и вершиной В. Но в данном случае вычислять площадь этого основания и указанную высоту слишком долгий путь к результату. Проще поступить следующим образом:
Чтобы получить объём указанного многогранника необходимо из объёма данной призмы АВСА1В1С1 вычесть объём пирамиды ВА1В1С1. Запишем:
Ответ: 4
245342. Найдите объем многогранника, вершинами которого являются точки А1, В1, В, С, правильной треугольной призмы АВСА1В1С1, площадь основания которой равна 4, а боковое ребро равно 3.
Построим указанный многогранник на эскизе:
Чтобы получить объём указанного многогранника необходимо из объёма призмы АВСА1В1С1 вычесть объёмы двух тел – пирамиды ABCА1 и пирамиды CА1В1С1. Запишем:
Ответ: 4
245343. Найдите объем многогранника, вершинами которого являются точки A, B, C, D, E, F, A1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 4, а боковое ребро равно 3.
Построим указанный многогранник на эскизе:
Это пирамида имеющая общее основание с призмой и высотой равной высоте призмы. Объём пирамиды будет равен:
Ответ: 4
245344. Найдите объем многогранника, вершинами которого являются точки A, В, С, A1, B1, C1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 3.
Построим указанный многогранник на эскизе:
Полученный многогранник является прямой призмой. Объём призмы равен произведению площади основания и высоты.
Высота исходной призмы и полученной общая, она равна трём (это длина бокового ребра). Остаётся определить площадь основания, то есть треугольника АВС.
Так как призма правильная, то в её основании лежит правильный шестиугольник. Площадь треугольника АВС равна одной шестой части этого шестиугольника, подробнее об этом посмотрите здесь (пункт 6). Следовательно площадь АВС равна 1. Вычисляем:
Ответ: 3
245345. Найдите объем многогранника, вершинами которого являются точки A, В, D, E, A1, B1, D1, E1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 2.
Построим указанный многогранник на эскизе:
Полученный многогранник является прямой призмой.
Высота исходной призмы и полученной общая, она равна двум (это длина бокового ребра). Остаётся определить площадь основания, то есть четырёхугольника АВDЕ.
Так как призма правильная, то в её основании лежит правильный шестиугольник. Площадь четырехугольника АВDЕ равна четырём шестым этого шестиугольника. Почему? Подробнее об этом посмотрите информацию здесь (пункт 6). Следовательно площадь АВDЕ будет равна 4. Вычисляем:
Ответ: 8
245346. Найдите объем многогранника, вершинами которого являются точки A, В, C, D, A1, B1, С1, D1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 2.
Построим указанный многогранник на эскизе:
Полученный многогранник является прямой призмой.
Высота исходной призмы и полученной общая, она равна двум (это длина бокового ребра). Остаётся определить площадь основания, то есть четырёхугольника АВCD. Отрезок AD соединяет диаметрально противоположные точки правильного шестиугольника, а это означает, что он разбивает его на две равные трапеции. Следовательно площадь четырёхугольника АВCD (трапеции) равна трём.
Вычисляем:
Ответ: 6
245347. Найдите объем многогранника, вершинами которого являются точки A, B, C, B1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 3.
Построим указанный многогранник на эскизе:
Полученный многогранник является пирамидой с основанием АВС и высотой ВВ1.
*Высота исходной призмы и полученной общая, она равна трём (это длина бокового ребра).
Остаётся определить площадь основания пирамиды, то есть треугольника АВC. Она равна одной шестой площади правильного шестиугольника, являющегося основанием призмы. Вычисляем:
Ответ: 1
245357. Найдите объем правильной шестиугольной призмы, все ребра которой равны корню из трёх.
Объём призмы равен произведению площади основания призмы и её высоты.
Высота прямой призмы равна её боковому ребру, то есть она уже нам дана – это корень из трёх. Вычислим площадь правильного шестиугольника лежащего в основании. Его площадь равна шести площадям равных друг другу правильных треугольников, при чём сторона такого треугольника равна ребру шестиугольника:
*Использовали формулу площади треугольника – площадь треугольника равна половине произведения соседних сторон на синус угла между ними.
Вычисляем объём призмы:
Ответ: 13,5
Что можно отметить особо? Внимательно стройте многогранник, не мысленно, а именно на листочке прорисуйте его. Тогда вероятность ошибки из-за невнимательности будет исключена. Запомните свойства правильного шестиугольника. Ну и формулы объёма, которые использовали важно помнить.
Решите две задачи на объём самостоятельно:
27084. Найдите объем правильной шестиугольной призмы, стороны основания которой равны 1, а боковые ребра равны √3.
27108. Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны 2√3 и наклонены к плоскости основания под углом 300.
На этом всё. Удачи!
С уважением, Александр.
P.S: Буду благодарен, если расскажете о сайте в социальных сетях