Подготовка к ЕГЭ по математике 2017 бесплатно!
Программируемые LEGO конструкторы! Посмотреть!

Основанием прямой треугольной призмы

Для вас ещё несколько несложных задачек на решение призмы. Рассмотрим прямую призму с прямоугольным треугольником в основании. Ставится вопрос о нахождении объёма или площади поверхности. Формула объёма призмы:

Формула площади поверхности призмы (общая):

*У прямой призмы боковая поверхность состоит из прямоугольников и равна она произведению периметра основания и высоты призмы. Необходимо помнить формулу площади треугольника. В данном случае, имеем прямоугольный треугольник – его площадь равна половине произведения катетов. Рассмотрим задачи:

Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 10 и 15, боковое ребро равно 5. Найдите объем призмы.

Площадь основания это площадь прямоугольного треугольника. Она равна половине площади прямоугольника со сторонами 10 и 15).

Таким образом,  искомый объём равен:

Ответ: 375

Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 20 и 8. Объем призмы равен 400. Найдите ее боковое ребро.

Задача обратная предыдущей.

Объем  призмы:

Площадь основания это площадь прямоугольного треугольника:

Таким образом

Ответ: 5

Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 5 и 12, высота призмы равна 8. Найдите площадь ее поверхности.

Площадь поверхности призмы складывается из площадей всех граней – это два равных по площади основания и боковая поверхность.

Для того, чтобы найти площади всех граней необходимо найти третью сторону основания призмы (гипотенузу прямоугольного треугольника).

По теореме Пифагора:

Теперь мы можем найти площадь основания и площадь боковой поверхности. Площадь основания равна:

Площадь боковой поверхности призмы с периметром основания  равна:

*Можно обойтись без формулы и просто сложить площади трёх прямоугольников:

Полная площадь поверхности призмы:

Ответ: 300

 

27082.  Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.

Посмотреть решение

27132. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, высота призмы равна 10. Найдите площадь ее поверхности.

Посмотреть решение

27151. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы.

На этом всё. Успеха вам!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.


Подготовка к ОГЭ по математике. Полный курс!

Школа репетиторов Анны Малковой. Супер тренинг!

Онлайн-обучение, подготовка к ЕГЭ и ОГЭ по предметам!

50 базовых упражнений лечебной физкультуры!

Отзывов (2)
  1. seoonly.ru

    Красота :)

  2. Ольга

    Спасибо!Чудесное завершение темы ))!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*