Подготовка к ЕГЭ по математике бесплатно!
Хостинг для вашего сайта!

Сравнение дробей

Сравнение дробей. В этой статье разберём различные способы используя которые можно сравнить две дроби. Рекомендую посмотреть весь список публикаций по дробям и изучать последовательно.

Прежде чем показать стандартный алгоритм сравнения дробей  давайте разберём некоторые случаи, в которых сразу глядя на пример можно сказать которая из дробей будет больше. Здесь нет особой сложности, немного аналитики и всё готово. Посмотрите на следующие дроби:

В строке (1) сразу можно определить какая дробь больше, в строке (2) это сделать затруднительно и тут применим «стандартный» (или его можно назвать наиболее часто применяемым) подход для сравнения.

Способ первый – аналитический.

1. Перед нами две дроби:

Числители равны, знаменатели неравны. Какая из них больше? Ответ очевиден! Больше та, у которой меньше знаменатель, то есть три семнадцатых. Почему? Простой вопрос: Что больше – одна десятая часть от чего либо или одна тысячная? Конечно же, одна десятая.

Получается, что при равных числителях больше та дробь, у которой меньше знаменатель. Не имеет значения стоят ли в числителях единицы или другие равные числа, суть не меняется.

Дополнительно к этому можно добавить следующий пример:

Какая из данных дробей больше (х положительное число)?

На основании уже представленной информации не трудно сделать вывод.

*Знаменатель первой дроби меньше, значит она больше.

2. Теперь рассмотрим вариант когда в одной из дробей числитель больше знаменателя. Пример:

Понятно, что первая дробь больше единицы, так как числитель больше знаменателя.  А вторая дробь меньше единицы, поэтому без вычислений и преобразований можем записать:

3. При сравнении некоторых обыкновенных неправильных дробей явно видно, что у одной из них целая часть больше. Например:

В первой дроби целая часть равна трём, а во второй единице, поэтому:

4. В некоторых примерах также явно видно какая дробь больше, например:

Видно, что первая дробь меньше 0,5. Почему? Если выразить подробно, то:

а вторая больше 0,5:

Поэтому можно ставить знак сравнения:

Способ второй. «Стандартный» алгоритм сравнения.

Правило! Чтобы сравнить две дроби, необходимо чтобы знаменатели были равны. Тогда сравнение осуществляется по числителям. Больше будет та дробь, у которой больше числитель.

Пример:

*Это и есть основное ВАЖНОЕ ПРАВИЛО, которым пользуются для сравнения дробей.

Если даны две дроби с неравными знаменателями, то необходимо их привести к такому виду, чтобы они были равны. Для этого используется основное свойство дроби.

Сравним следующие дроби (знаменатели неравны):

Приведём их:

Как привести дроби к равным знаменателям? Очень просто! Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой.

Ещё примеры:

Обратите внимание, что знаменатель вычислять не обязательно (видно что они равны), для сравнения достаточно вычислить только числители.

*Все дроби, которые мы рассмотрели выше (первый способ) можно сравнить также используя этот подход.

На этом можно было бы закончить … Но есть ещё один «беспроигрышный» способ сравнения.

Способ третий. Деление столбиком.

Посмотрите пример:

Согласитесь, что для того чтобы привести к общему знаменателю и затем сравнить числители необходимо выполнить относительно объёмные вычисления. Используем следующий подход — выполним деление столбиком:

Как только мы обнаруживаем разницу в результате, то процесс деления можно остановить.

Вывод: так как 0,12 больше чем 0,11, то вторая дробь будет больше. Таким образом, можно поступать со всеми дробями.

На этом всё.

С уважением, Александр Крутицких.

Делитесь информацией в социальных сетях.

 


Подготовка к ОГЭ по математике. Полный курс!

Школа репетиторов Анны Малковой!

Онлайн-обучение, подготовка к ЕГЭ и ОГЭ по предметам!

Все секреты здоровья позвоночника!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.