Здравствуйте, дорогие друзья! Приглашаю вас на очередной конкурс по решению задач в режиме реального времени. Все условия конкурса перечислены здесь. Начало в 16:00 по московскому времени 25 апреля. Победители будут объявлены мной в комментарии. Далее
Архив за 25.04.2015
Апрельский онлайн-марафон (2015)!
Найдите объём многогранника
Дорогие друзья! Для вас очередная статья с призмами. Имеется в составе экзамена такой тип заданий, в которых требуется определить объём многогранника. При чём он дан не в «чистом виде», а сначала его требуется построить. Я бы выразился так – его нужно «увидеть» в другом заданном теле.
Статья на с такими заданиями уже была на блоге, посмотрите. В представленных ниже заданиях даются прямые правильные призмы – треугольная или шестиугольная. Если совсем позабыли что такое призма, то вам сюда.
В правильной призме в основании лежит правильный многоугольник. Следовательно в основании правильной треугольной призмы лежит равносторонний треугольник, а в основании правильной шестиугольной призмы лежит правильный шестиугольник.
При решении задач используется формула объёма пирамиды, рекомендую посмотреть информацию в этой статье. Так же будет полезно посмотреть статью с параллелепипедами, принцип решения заданий схож. Ещё раз посмотрите формулы, которые необходимо знать. Далее
Основанием прямой треугольной призмы
Для вас ещё несколько несложных задачек на решение призмы. Рассмотрим прямую призму с прямоугольным треугольником в основании. Ставится вопрос о нахождении объёма или площади поверхности. Формула объёма призмы:
Формула площади поверхности призмы (общая):