Научись решать задачи ЕГЭ за пару минут!
БЕСПЛАТНЫЕ вебинары ЕГЭ!

Архив за Формулы Теория

Формулы стереометрии. Общий обзор!

Формулы стереометрии. В этой статье общий обзор формул для решения задач по стереометрии. Нужно сказать, что задачи по стереометрии довольно разнообразны, но они несложны. Это задания на нахождение геометрических величин: длин, углов, площадей, объёмов.

Рассматриваются: куб, прямоугольный параллелепипед, призма, пирамида, составной многогранник, цилиндр, конус, шар. Печалит тот факт, что некоторые выпускники на самом экзамене за такие задачи даже не берутся., хотя более  80% таких задач решаются элементарно, практически устно.

Остальные требуют небольших усилий, наличия знаний и специальных приёмов. В будущих статьях мы с вами будем рассматривать все эти задачи, не пропустите!

Для решения необходимо знать формулы площадей поверхности и объёмов параллелепипеда, пирамиды, призмы, цилиндра, конуса и шара. Ещё раз подчеркну, что сложных задач нет, все они решаются в 2-3 действия (максимум). Важно «увидеть» какую формулу необходимо применить, только и всего.

Все необходимые формулы представлены ниже:

Уравнение прямой проходящей через две точки

Уравнение прямой проходящей через две точки. В статье "Геометрический смысл производной. Часть 1" я обещал вам разобрать второй способ решения представленных задач на нахождение производной, при данном графике функции и касательной к этому графику. Этот способ мы разберём в следующей статье, не пропустите! Почему в следующей?

Дело в том, что там будет использоваться формула уравнения прямой. Конечно, можно было бы просто показать данную формулу и посоветовать вам её выучить. Но лучше объяснить – от куда она исходит (как выводится). Это необходимо! Если вы её забудете, то быстро восстановить её не представит труда. Ниже подробно всё изложено. Итак, у нас на координатной плоскости имеется две точки А11) и В(х22), через указанные точки проведена прямая: Далее

Формулы приведения. Как запомнить?

Формулы приведения! Они относятся к разделу «тригонометрия» в математике. Суть их заключается в приведении тригонометрических функций углов к более «простому» виду. О важности их знания  написать можно много. Этих формул аж 32 штуки!

Не пугайтесь, учить их не надо, как и многие другие формулы  в курсе математики. Лишней информацией голову забивать не нужно, необходимо  запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!»  – это значит, что  действительно,  это необходимо  именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

*А тем, кто хочет набить руку решая задачи, вот здесь разобраны 22 примера от простых до самых сложных.

Перечислю лишь некоторые задачи, типы которых возможны на экзамене, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например: 

Далее