Подготовка к ЕГЭ по математике 2017 бесплатно!
Программируемые LEGO конструкторы! Посмотреть!

Найдите объём многогранника

Дорогие друзья! Для вас очередная статья с призмами. Имеется в составе экзамена такой тип заданий, в которых требуется определить объём многогранника. При чём он дан не в «чистом виде», а сначала его требуется построить. Я бы выразился так – его нужно «увидеть» в другом заданном теле. Статья на с такими заданиями уже была на блоге, посмотрите. В представленных ниже заданиях даются прямые правильные призмы – треугольная или шестиугольная. Если совсем позабыли что такое призма, то вам сюда.

В правильной призме в основании лежит правильный многоугольник. Следовательно в основании правильной треугольной призмы лежит равносторонний треугольник, а в основании правильной шестиугольной призмы лежит правильный шестиугольник.

При решении задач используется формула объёма пирамиды, рекомендую посмотреть информацию в этой статьеТак же будет полезно посмотреть статью с параллелепипедами, принцип решения заданий схож.

Ещё раз посмотрите формулы, которые необходимо знать.

Объём призмы:

Объём пирамиды:

245340. Найдите объем многогранника, вершинами которого являются точки А, В, С, А1 правильной треугольной призмы АВСА1В1С1, площадь основания которой равна 2, а боковое ребро равно 3.

Построим указанный многогранник на эскизе:

Получили пирамиду с основанием АВС и вершиной А1. Площадь её основания равна площади основания призмы (основание общее). Высота также общая. Объём пирамиды равен:

Ответ: 2

 

245341. Найдите объем многогранника, вершинами которого являются точки А, В, С, А1, С1,  правильной треугольной призмы АВСА1В1С1, площадь основания которой равна 3, а боковое ребро равно 2.

Построим указанный многогранник на эскизе:

Это пирамида с основанием АА1С1С и высотой равной расстоянию между ребром АС и вершиной В. Но в данном случае вычислять площадь этого основания и указанную высоту слишком долгий путь к результату. Проще поступить следующим образом:

Чтобы получить объём указанного многогранника необходимо из объёма данной призмы АВСА1В1С1 вычесть объём пирамиды ВА1В1С1Запишем:

Ответ: 4

 

245342. Найдите объем многогранника, вершинами которого являются точки А1, В1, В, С, правильной треугольной призмы АВСА1В1С1, площадь основания которой равна 4, а боковое ребро равно 3.

Построим указанный многогранник на эскизе:

Чтобы получить объём указанного многогранника необходимо из объёма призмы АВСА1В1С1 вычесть объёмы двух тел – пирамиды ABCА1 и пирамиды CА1В1С1.  Запишем:

Ответ: 4

 

245343. Найдите объем многогранника, вершинами которого являются точки A, B, C, D, E, F, A1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 4, а боковое ребро равно 3.

Построим указанный многогранник на эскизе:

Это пирамида имеющая общее основание с призмой и высотой равной высоте призмы. Объём пирамиды будет равен:

Ответ: 4

 

245344. Найдите объем многогранника, вершинами которого являются точки A, В, С, A1, B1, C1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 3.

Построим указанный многогранник на эскизе:

Полученный многогранник является прямой призмой. Объём призмы равен произведению площади основания и высоты.

Высота исходной призмы и полученной общая, она равна трём (это длина бокового ребра). Остаётся определить площадь основания, то есть треугольника АВС.

Так как призма правильная, то в её основании лежит правильный шестиугольник. Площадь треугольника АВС равна одной шестой части этого шестиугольника, подробнее об этом посмотрите здесь (пункт 6). Следовательно площадь АВС равна 1. Вычисляем:

Ответ: 3

245345. Найдите объем многогранника, вершинами которого являются точки A, В, D, E, A1, B1, D1, E1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 2.

Построим указанный многогранник на эскизе:

Полученный многогранник является прямой призмой.

Высота исходной призмы и полученной общая, она равна двум (это длина бокового ребра). Остаётся определить площадь основания, то есть четырёхугольника  АВDЕ.

Так как призма правильная, то в её основании лежит правильный шестиугольник. Площадь четырехугольника АВDЕ равна четырём шестым этого шестиугольника. Почему? Подробнее об этом посмотрите информацию здесь (пункт 6). Следовательно площадь АВDЕ будет равна 4. Вычисляем:

Ответ: 8

245346. Найдите объем многогранника, вершинами которого являются точки A, В, C, D, A1, B1, С1, D1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 2.

Построим указанный многогранник на эскизе:

Полученный многогранник является прямой призмой.

Высота исходной призмы и полученной общая, она равна двум (это длина бокового ребра). Остаётся определить площадь основания, то есть четырёхугольника  АВCD. Отрезок AD соединяет диаметрально противоположные точки правильного шестиугольника, а это означает, что он разбивает его на две равные трапеции. Следовательно площадь четырёхугольника АВCD (трапеции) равна трём.

Вычисляем:

Ответ: 6

 

245347. Найдите объем многогранника, вершинами которого являются точки A, B, C, B1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 3. 

Построим указанный многогранник на эскизе:

Полученный многогранник является пирамидой с основанием АВС и высотой ВВ1

*Высота исходной призмы и полученной общая, она равна трём (это длина бокового ребра).

Остаётся определить площадь основания пирамиды, то есть треугольника  АВC. Она равна одной шестой площади правильного шестиугольника, являющегося основанием призмы. Вычисляем:

Ответ: 1

245357. Найдите объем правильной шестиугольной призмы, все ребра которой равны корню из трёх.

Объём призмы равен произведению площади основания призмы и её высоты.

Высота прямой призмы равна её боковому ребру, то есть она уже нам дана – это корень из трёх. Вычислим площадь правильного шестиугольника лежащего в основании. Его площадь равна шести площадям равных друг другу правильных треугольников, при чём сторона такого треугольника равна ребру шестиугольника:

*Использовали формулу площади треугольника – площадь треугольника равна половине произведения соседних сторон на синус угла между ними.

Вычисляем объём призмы:

Ответ: 13,5

Что можно отметить особо? Внимательно стройте многогранник, не мысленно, а именно на листочке прорисуйте его. Тогда вероятность ошибки из-за невнимательности будет исключена. Запомните свойства правильного шестиугольника. Ну и формулы объёма, которые использовали важно помнить.

Решите две задачи на объём самостоятельно:

27084. Найдите объем правильной шестиугольной призмы, стороны основания которой равны 1, а боковые ребра равны √3.

Посмотреть решение

27108. Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны 2√3 и наклонены к плоскости основания под углом 300.

Посмотреть решение

На этом всё. Удачи!

С уважением, Александр Крутицких.

P.S: Буду благодарен, если расскажете о сайте в социальных сетях


Подготовка к ОГЭ по математике. Полный курс!

Школа репетиторов Анны Малковой. Супер тренинг!

Онлайн-обучение, подготовка к ЕГЭ и ОГЭ по предметам!

50 базовых упражнений лечебной физкультуры!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*